1. Untangling the biological and inflammatory behavior of silk-like sutures In vivo.
- Author
-
Franco AR, Pirraco R, Fernandes EM, Rodrigues F, Leonor IB, Kaplan DL, and Reis RL
- Subjects
- Animals, Escherichia coli, Sutures, Silk chemistry, Surgical Wound Infection prevention & control, Anti-Bacterial Agents pharmacology, Methicillin-Resistant Staphylococcus aureus, Bacterial Infections, Anti-Infective Agents, Spiders
- Abstract
Recombinant spider silk materials with antimicrobial peptides are a promising new class of drug-free antimicrobial materials capable of preventing surgical site infections (SSI), but their potential to impede infections is unclear. Herein, we aimed to unravel the biological and inflammatory potential of bioengineered spider silk materials to prevent SSI using an infection animal model. Silk-like fibers made of silk fibroin and spider silk proteins with antimicrobial peptides (6mer-HNP1) held improved stiffness (2.9 GPa) and had a slow biodegradation profile while inhibiting bacterial adherence in vitro by 5-log and 6-log reduction on Methicillin-Resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), respectively. In vivo studies showed that fibers with 6mer-HNP1 elicited a short-term low to mild local inflammatory response, similar to implanted commercial sutures. In the presence of a bacterial infection, the mediators related to infection and inflammation were downregulated suggesting that the fibers maintained a low but active response to bacterial infection. Thus, the presence of 6mer-HNP1 helped the host maintain an active response to bacterial infection, impairing the development of an acute infection. Our findings further support the use of bioengineered spider silk proteins to develop drug-free antimicrobial sutures capable to impair SSI., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF