1. Characterization of calcium signaling proteins from the fat body of the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Implications for diapause and lipid metabolism.
- Author
-
Doğan C, Hänniger S, Heckel DG, Coutu C, Hegedus DD, Crubaugh L, Groves RL, Mutlu DA, Suludere Z, Bayram Ş, and Toprak U
- Subjects
- Animals, Calcineurin metabolism, Calmodulin metabolism, Diapause, Diapause, Insect, Fat Body metabolism, Insect Proteins metabolism, Calcium Signaling, Coleoptera metabolism, Coleoptera physiology, Lipid Metabolism
- Abstract
Calcium (Ca
2 + ) regulates many cellular and physiological processes from development to reproduction. Ca2 + is also an important factor in the metabolism of lipids, the primary energy source used during insect starvation and diapause. Ca2+ signaling proteins bind to Ca2+ and maintain intracellular Ca2+ levels. However, knowledge about Ca2+ signaling proteins is mostly restricted to the model Drosophila melanogaster and the response of Ca2+ signaling genes to starvation or diapause is not known. In this study, we identified three Ca2+ signaling proteins; the primary Ca2+ binding protein Calmodulin (LdCaM), phosphatase Calcineurin B (LdCaNB), and the senescence marker protein Regucalcin (LdRgN), from the fat body of the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). This insect is a major pest of potato worldwide and overwinters under hibernation diapause as adults while utilizing lipids as the primary energy source. Putative EF-hand domains involved in Ca2 + binding were present in LdCaM, LdCaNB, but absent in LdRgN. LdCaM and LdCaNB were expressed in multiple tissues, while LdRgN was primarily expressed in the fat body. LdCaM was constitutively-expressed throughout larval development and at the adult stage. LdCaNB was primarily expressed in feeding larvae, and LdRgN in both feeding larvae and adults at comparable levels; however, both genes were down-regulated by molting. A response to starvation was observed only for LdRgN. Transcript abundance analysis in the entire body in relation to diapause revealed differential regulation with a general suppression during diapause, and higher mRNA levels in favor of females at post-diapause for LdCaM, and in favor of males at non-diapause for LdCaNB. Fat body-specific transcript abundance was not different between non-diapause and post-diapause for LdCaNB, but both LdCaM and LdRgN were down-regulated in males and both sexes, respectively by post-diapause. Silencing LdCaNB or LdRgN in larvae led to decreased fat content, indicating their involvement in lipid accumulation, while RNAi of LdCaM led to lethality., (Crown Copyright © 2021. Published by Elsevier Ltd. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF