1. Energy-guided diffusion model for CBCT-to-CT synthesis.
- Author
-
Fu L, Li X, Cai X, Miao D, Yao Y, and Shen Y
- Subjects
- Reproducibility of Results, Thorax, Phantoms, Imaging, Spiral Cone-Beam Computed Tomography
- Abstract
Cone Beam Computed Tomography (CBCT) plays a crucial role in Image-Guided Radiation Therapy (IGRT), providing essential assurance of accuracy in radiation treatment by monitoring changes in anatomical structures during the treatment process. However, CBCT images often face interference from scatter noise and artifacts, posing a significant challenge when relying solely on CBCT for precise dose calculation and accurate tissue localization. There is an urgent need to enhance the quality of CBCT images, enabling a more practical application in IGRT. This study introduces EGDiff, a novel framework based on the diffusion model, designed to address the challenges posed by scatter noise and artifacts in CBCT images. In our approach, we employ a forward diffusion process by adding Gaussian noise to CT images, followed by a reverse denoising process using ResUNet with an attention mechanism to predict noise intensity, ultimately synthesizing CBCT-to-CT images. Additionally, we design an energy-guided function to retain domain-independent features and discard domain-specific features during the denoising process, enhancing the effectiveness of CBCT-CT generation. We conduct numerous experiments on the thorax dataset and pancreas dataset. The results demonstrate that EGDiff performs better on the thoracic tumor dataset with SSIM of 0.850, MAE of 26.87 HU, PSNR of 19.83 dB, and NCC of 0.874. EGDiff outperforms SoTA CBCT-to-CT synthesis methods on the pancreas dataset with SSIM of 0.754, MAE of 32.19 HU, PSNR of 19.35 dB, and NCC of 0.846. By improving the accuracy and reliability of CBCT images, EGDiff can enhance the precision of radiation therapy, minimize radiation exposure to healthy tissues, and ultimately contribute to more effective and personalized cancer treatment strategies., Competing Interests: Declaration of competing interest No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF