1. Molecular dynamics simulation of the interaction of a raspberry polygalacturonase (RiPG) with a PG inhibiting protein (RiPGIP) isolated from ripening raspberry (Rubus idaeus cv. Heritage) fruit as a model to understand proteins interaction during fruit softening.
- Author
-
Morales-Quintana L, Monsalve L, Bernales M, Figueroa CR, Valdenegro M, Olivares A, Álvarez F, Cherian S, and Fuentes L
- Subjects
- Molecular Dynamics Simulation, Fruit metabolism, Pectins metabolism, Plant Proteins metabolism, Polygalacturonase chemistry, Polygalacturonase metabolism, Rubus metabolism
- Abstract
Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin disassembly and the subsequent textural changes during fruit ripening. Although the interaction of fungal PGs with other proteins has been documented, the interaction of plant PGs with other plant proteins has not yet been studied. In this study, the molecular mechanisms involved in raspberry fruit ripening, particularly the polygalacturonase (RiPG) interaction with polygalacturonase inhibiting protein (RiPGIP) and substrate, were investigated with a structural approach. The 3D model of RiPG2 and RiPGIP3 was built using a comparative modeling strategy and validated using molecular dynamics (MD) simulations. The RiPG2 model structure comprises 11 complete coils of right-handed parallel β-helix architecture, with an average of 27 amino acid residues per turn. The structural model of the RiPGIP3 displays a typical structure of LRR protein, with the right-handed superhelical fold with an extended parallel β-sheet. The conformational interaction between the RiPG2 protein and RiPGIP3 showed that RiPGIP3 could bind to the enzyme and thereby leave the active site cleft accessible to the substrate. All this evidence indicates that RiPG2 enzyme could interact with RiPGIP3 protein. It can be a helpful model for evaluating protein-protein interaction as a potential regulator mechanism of hydrolase activity during pectin disassembly in fruit ripening., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF