1. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.
- Author
-
Martínez-Lüscher J, Morales F, Sánchez-Díaz M, Delrot S, Aguirreolea J, Gomès E, and Pascual I
- Subjects
- Carbon metabolism, Fruit growth & development, Plant Leaves metabolism, Temperature, Vitis radiation effects, Carbon Dioxide metabolism, Climate Change, Ultraviolet Rays, Vitis physiology
- Abstract
The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation., (Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF