1. Oxidation of caspase-8 by hypothiocyanous acid enables TNF-mediated necroptosis.
- Author
-
Bozonet SM, Magon NJ, Schwartfeger AJ, Konigstorfer A, Heath SG, Vissers MCM, Morris VK, Göbl C, Murphy JM, Salvesen GS, and Hampton MB
- Subjects
- Animals, Mice, Inflammation metabolism, Oxidation-Reduction drug effects, Fibroblasts drug effects, Fibroblasts enzymology, Fibroblasts metabolism, Peroxidase, Lactoperoxidase, Catalytic Domain, Caspase 8 chemistry, Caspase 8 metabolism, Necroptosis drug effects, Oxidants metabolism, Oxidants pharmacology, Tumor Necrosis Factors metabolism
- Abstract
Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation., Competing Interests: Conflict of interest J. M. M. contributes to the development of necroptosis inhibitors in collaboration with Anaxis Pharma Pty Ltd. G.S.S. consults for Genentech Inc. All other authors declare they have no conflicts of interest with the contents of this article., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF