1. On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation
- Author
-
Xavier Antoine, Emmanuel Lorin, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Mathématiques [Montréal] (CRM), Université de Montréal (UdeM), School of Mathematics and Statistics [Carleton University], and Carleton University
- Subjects
pseudo-differential calculus ,Applied Mathematics ,Relaxation (iterative method) ,Schrödinger equation ,Frequency space ,010103 numerical & computational mathematics ,01 natural sciences ,010101 applied mathematics ,Computational Mathematics ,symbols.namesake ,Rate of convergence ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Fixed point algorithm ,Waveform ,Applied mathematics ,Rewriting ,0101 mathematics ,Contraction (operator theory) ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,domain decomposition method ,Mathematics - Abstract
International audience; This paper is dedicated to the analysis of the rate of convergence of the classical and quasi-optimal Schwarz waveform relaxation (SWR) method for solving the linear Schrödinger equation with space-dependent potential. The strategy is based on i) the rewriting of the SWR algorithm as a fixed point algorithm in frequency space, and ii) the explicit construction of contraction factors thanks to pseudo-differential calculus. Some numerical experiments illustrating the analysis are also provided.
- Published
- 2019
- Full Text
- View/download PDF