89 results on '"Z.H. Zhang"'
Search Results
2. Microstructure and tribological properties of multilayered ZrCrW(C)N coatings fabricated by cathodic vacuum-arc deposition
- Author
-
Y. Li, Z.W. Wang, Z.H. Zhang, M.H. Shao, J.P. Lu, J.W. Yan, L. Zhang, and Y.Y. He
- Subjects
Process Chemistry and Technology ,Materials Chemistry ,Ceramics and Composites ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Published
- 2022
3. Monolayer MoS2 synaptic devices synergistically modulated by Na+ ions and sulfur vacancies for neuromorphic computing and pain perception stimulation
- Author
-
Y.B. Liu, D. Cai, T.C. Zhao, M. Shen, X. Zhou, Z.H. Zhang, X.W. Meng, and D.E. Gu
- Subjects
Polymers and Plastics ,Mechanics of Materials ,Mechanical Engineering ,Materials Chemistry ,Metals and Alloys ,Ceramics and Composites - Published
- 2023
4. Coupled particle and mesh method in an Euler frame for unsteady flows around the pitching airfoil
- Author
-
C. Huang, L. Zhao, J.P. Niu, J.J. Di, J.J. Yuan, Q.L. Zhao, F.Q. Zhang, Z.H. Zhang, J.M. Lei, and G.P. He
- Subjects
Computational Mathematics ,Applied Mathematics ,General Engineering ,Analysis - Published
- 2022
5. Studies on the 316/NiTi functionally gradient ultra-thick coatings fabricated with directed energy deposition: Microstructure, crystallography and wear mechanism
- Author
-
M.H. Nie, P.F. Jiang, Y.X. Zhou, Y.L. Li, and Z.H. Zhang
- Subjects
General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,Surfaces, Coatings and Films - Published
- 2023
6. Multi-wire arc additive manufacturing of TC4-Nb-NiTi bionic layered heterogeneous alloy: Microstructure evolution and mechanical properties
- Author
-
P.F. Jiang, M.H. Nie, J.Z. Teng, C.Z. Liu, and Z.H. Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2023
7. Effect of double tempering process on sulfide stress cracking susceptibility in API-5CT-C110 casing steel
- Author
-
G.Y. Zhou, X.T. Wang, G.H. Cao, A.M. Russell, M. Luo, X.M. Dong, and Z.H. Zhang
- Subjects
General Chemical Engineering ,General Materials Science ,General Chemistry - Published
- 2023
8. Direct energy deposition for fabricating the bionic sandwich heterogeneous alloy 316-Cu-NiTi: Microstructure and wear mechanism
- Author
-
M.H. Nie, P.F. Jiang, X.R. Li, and Z.H. Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2023
9. Multi-wire arc additive manufacturing of TC4/Nb bionic layered heterogeneous alloy: Microstructure evolution and mechanical properties
- Author
-
P.F. Jiang, M.H. Nie, J.Z. Teng, X.B. Wang, C.Z. Liu, and Z.H. Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2023
10. Graphene/MoSi2X4: A class of van der Waals heterojunctions with unique mechanical and optical properties and controllable electrical contacts
- Author
-
Z.H. Li, J.N. Han, S.G. Cao, and Z.H. Zhang
- Subjects
General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,Surfaces, Coatings and Films - Published
- 2023
11. Effects of seed moisture content and Epichloe endophyte on germination and physiology of Achnatherum inebrians
- Author
-
W.R. Simpson, X.L. Niu, Y.L. Li, G.S. Bao, Chunjie Li, H.F. Xu, X.Z. Li, Z.H. Zhang, M.L. Song, and X. Liu
- Subjects
0106 biological sciences ,biology ,Moisture ,food and beverages ,Plant Science ,biology.organism_classification ,01 natural sciences ,Endophyte ,0104 chemical sciences ,010404 medicinal & biomolecular chemistry ,Horticulture ,Catalase ,Germination ,biology.protein ,Proline ,Sugar ,Water content ,Epichloë ,010606 plant biology & botany - Abstract
Vertically transmitted Epichloe endophyte can be beneficial to host grasses. In order to achieve high seed and endophyte viability under storage, knowledge of optimal seed moisture content and germination behavior of endophyte-infected grass seed is required. In the current research project, Achnatherum inebrians seeds were adjusted to different moisture contents to investigate effects on germination and viability of the endophyte, E. gansuensis, after six months of storage. To explore mechanism of the effect of moisture content and endophyte on seed germination, a number of physiological and biochemical indicators were determined, including electrical conductivity (EC), contents of proline (Pro), malondialdehyde (MDA) and total soluble sugar; activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and hydrogen peroxide (H2O2). The results showed that the viability of the endophyte at 5.5% and 9.5% seed moisture was significantly (p
- Published
- 2020
12. Effects of CE and La on Microstructure and Sulfide Stress Cracking Susceptibility of Api-5ct-C110 Casing Steel
- Author
-
H. Shen, G.Y. Zhou, G.H. Cao, M. Luo, X.M. Dong, and Z.H. Zhang
- Subjects
History ,Fuel Technology ,Polymers and Plastics ,Renewable Energy, Sustainability and the Environment ,Energy Engineering and Power Technology ,Business and International Management ,Condensed Matter Physics ,Industrial and Manufacturing Engineering - Published
- 2022
13. Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing
- Author
-
P.F. Jiang, M.H. Nie, X.M. Zong, X.B. Wang, Z.K. Chen, C.Z. Liu, J.Z. Teng, and Z.H. Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2023
14. Microstructure evolution of 6252 armor steel under hypervelocity impact
- Author
-
H.K. Wang, Z.Z. Li, Z.H. Zhang, Y.Y. He, A.J. Liu, Z.Q. Xu, Y. Tan, and X.W. Cheng
- Subjects
Mechanics of Materials ,Mechanical Engineering ,Automotive Engineering ,Aerospace Engineering ,Ocean Engineering ,Safety, Risk, Reliability and Quality ,Civil and Structural Engineering - Published
- 2022
15. Microstructure and mechanical properties of Ti basic bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing
- Author
-
P.F. Jiang, X.R. Li, X.M. Zong, X.B. Wang, Z.K. Chen, C.Z. Liu, N.K. Gao, and Z.H. Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,Materials Chemistry ,Metals and Alloys - Published
- 2022
16. Multi-wire arc additive manufacturing of Ti basic heterogeneous alloy: Effect of deposition current on the microstructure, mechanical property and corrosion-resistance
- Author
-
P.F. Jiang, X.R. Li, X.M. Zong, X.B. Wang, Z.K. Chen, H.X. Yang, C.Z. Liu, N.K. Gao, and Z.H. Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,Materials Chemistry ,Metals and Alloys - Published
- 2022
17. Lead-free tin-based perovskites nanocrystals for high-performance self-driven bulk-heterojunction photodetectors
- Author
-
M. Sulaman, S.Y. Yang, Z.H. Zhang, A. Imran, A. Bukhtiar, Z.H. Ge, Y. Tang, Y.R. Jiang, L.B. Tang, and B.S. Zou
- Subjects
Physics and Astronomy (miscellaneous) ,General Materials Science ,Energy (miscellaneous) - Published
- 2022
18. Vertical strain and twist induced tunability on electronic and optical properties of Janus HfSSe/SnC van der Waals heterostructure
- Author
-
H.L. Chen, J.N. Han, X.Q. Deng, Z.Q. Fan, L. Sun, and Z.H. Zhang
- Subjects
General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,Surfaces, Coatings and Films - Published
- 2022
19. High-level expression and improved pepsin activity by enhancing the conserved domain stability based on a scissor-like model
- Author
-
Yue Zhao, Yulu Miao, Yalong Cong, Jiawei Wang, Fengdong Zhi, Yue Pan, Jianguo Zhang, John Z.H. Zhang, and Lujia Zhang
- Subjects
Food Science - Published
- 2022
20. Emitted secondary Electrons: In vacuo plasmon energy gain observation using a Three-Point probe method
- Author
-
B. Da, X. Liu, J.M. Gong, Z.H. Zhang, Z.J. Ding, N.T. Cuong, J. Hu, J.W. Liu, Z.S. Gao, H.X. Guo, H.X. Wang, H. Zhang, Y. Harada, H. Yoshikawa, and S. Tanuma
- Subjects
General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,Surfaces, Coatings and Films - Published
- 2022
21. The role of interfacial reaction on the dynamic mechanical response in graphene nano-flake/Ti composites
- Author
-
Q.B. Fan, Xingwang Cheng, Liu Liang, X.N. Mu, Fuchi Wang, Y.X. Ge, S. Chang, H.N. Cai, H.Q. Duan, Yanbo Liu, Z.H. Zhang, and H.M. Zhang
- Subjects
Materials science ,Graphene ,Bar (music) ,Composite number ,Spark plasma sintering ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Metal ,chemistry ,law ,visual_art ,Nano ,visual_art.visual_art_medium ,General Materials Science ,Composite material ,0210 nano-technology ,Ductility ,Carbon - Abstract
For the purpose of relating microscopic interface characteristics to macroscopic dynamic properties in carbon/metal nano-composites, the graphene nano-flakes (GNFs)/Ti composites were fabricated by spark plasma sintering (SPS) and subsequent 723K, 923K, 23K and 1323K hot-rolling. The dynamic properties (∼3000s−1) and interface failure processes were investigated by introducing Spilt Hopkinson Pressure Bar (SHPB) and stop-ring technology. A superior strength without losing ductility was realized by 1123K as-rolled GNFs/Ti composite. Observations provide new insights into the unique and effective load transfer process of interfacial TiC nano-layer on partially reacted GNFs, which appears to be responsible for the extraordinary dynamic property.
- Published
- 2019
22. Effect of tempering temperature at high temperature zone on sulfide stress cracking behavior for casing steel
- Author
-
Zhongming Ren, M.C. Li, G.H. Cao, M. Liu, X.T. Wang, M. Luo, Z.H. Zhang, and X. Li
- Subjects
Yield (engineering) ,Materials science ,Metallurgy ,General Engineering ,020101 civil engineering ,02 engineering and technology ,Microstructure ,Lower temperature ,0201 civil engineering ,020303 mechanical engineering & transports ,0203 mechanical engineering ,General Materials Science ,Tempering ,Dislocation ,Sulfide stress cracking ,Casing ,Electron backscatter diffraction - Abstract
Three tempering temperatures at high temperature zone (690 °C, 700 °C and 710 °C) are selected into the quenching-and-tempering processes and performed on the rolled Cr-Mo steel to develop API-5CT-C110 casing steels. Effect of tempering temperature on sulfide stress cracking (SSC) behavior is quantitatively evaluated and further explored by characterizing the microstructure and crystallography. The results show that the strength of steel decreases with tempering temperature, but the SSC susceptibility is reversely varied. EBSD analysis indicates that the steel tempered at lower temperature (690 °C) generates more grains with high Taylor factors, which are difficult to yield, leading to the increasing of dislocation density and more susceptible to SSC.
- Published
- 2019
23. Size effect of flake Ti powders on the mechanical properties in graphene nanoflakes/Ti fabricated by flake powder metallurgy
- Author
-
Z.H. Zhang, H.M. Zhang, Y.X. Ge, Jingbo Li, Xingwang Cheng, X.L. Jiao, Liu Liang, Fuchi Wang, Q.B. Fan, S. Chang, X.N. Mu, Yanbo Liu, and H.N. Cai
- Subjects
Titanium carbide ,Materials science ,Graphene ,Flake ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,chemistry.chemical_compound ,Compressive strength ,chemistry ,Mechanics of Materials ,law ,Powder metallurgy ,Ceramics and Composites ,Composite material ,Deformation (engineering) ,0210 nano-technology ,Ductility ,Ball mill - Abstract
The effect of the size of the flake Ti powders on fabricating graphene nanoflakes (GNFs)/Ti composites were investigated in this work. By this, the flake Ti powders of various size were produced via the flake powder metallurgy methods. The GNFs were tightly inserted into the flake Ti powders during high energy ball milling (HEBM) process. Raw spherical Ti powders (45 μm) with 4.34 deformation degree exhibit the best GNFs distribution on boundaries and in the interior of grains. Thus, after a short time heat treatment, the exceptional network-structural GNFs/Flake Ti properties were achieved with a good ductility and a superior compressive strength of ∼2.8 GPa. It was demonstrated that the excellent properties were mainly attributed to the proper combination of special distribution status and effective load transfer ability of titanium carbide interface. The results might provide new insights for designing advanced GNFs/Fake Ti composites with simultaneously high strength and ductility.
- Published
- 2019
24. Cu-mediated grain boundary engineering in Nd–Ce–Fe–B nanostructured permanent magnets
- Author
-
Y.M. Tao, J.Y. Jin, L.Z. Zhao, X.L. Liu, Z.H. Zhang, G.H. Bai, C. Wu, J.M. Greneche, K. Lv, B. Xin, and M. Yan
- Subjects
Biomaterials ,Materials Chemistry ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2022
25. Measurement of the e+e−→Σ0Σ¯0 cross sections at center-of-mass energies from 2.3864 to 3.0200 GeV
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, J.P. Dai, X.C. Dai, A. Dbeyssi, R.B. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, X.L. Gao, Y. Gao, Y.G. Gao, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, T.T. Han, T.Z. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, M. Himmelreich, T. Holtmann, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.B. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Z.B. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, L.Z. Liao, J. Libby, C.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, Y.F. Long, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, C. Schnier, K. Schoenning, D.C. Shan, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, Q.Q. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, G.F. Xu, J.J. Xu, Q.J. Xu, W. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, W. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, Guangyi Zhang, H.H. Zhang, H.Y. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, X.L. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Nuclear and High Energy Physics - Published
- 2022
26. Boiling on nano-porous structures: Theoretical analysis and molecular dynamics simulations
- Author
-
S.Y. Guan, Z.H. Zhang, R. Wu, X.K. Gu, and C.Y. Zhao
- Subjects
Fluid Flow and Transfer Processes ,Mechanical Engineering ,Condensed Matter Physics - Published
- 2022
27. Arsenene nanotubes adsorbed with various non-metallic atoms: Chemical bonding, odd-even effect, and electronic transport
- Author
-
L. Zhang, H.L. Chen, and Z.H. Zhang
- Published
- 2022
28. Well Strength-Plasticity Compatibility in Graphene Nanoplatelets/Ti Composites by Strengthening the Interface Bonding Via In-Situ Formed TiB Whisker
- Author
-
Shengda Guo, X.N. Mu, Xingwang Cheng, H.M. Zhang, Yunkai Li, Liu Liang, Q.B. Fan, and Z.H. Zhang
- Subjects
In situ ,Materials science ,Whisker ,Compatibility (geochemistry) ,Spark plasma sintering ,Nanoengineering ,Plasticity ,Interface bonding ,Composite material ,Ductility - Abstract
Xanthium-inspired nanoengineering was employed for the interfacial structure design and achieved strength-plasticity compatibility in graphene nanoplatelets (GNPs)/Ti composites. GNPs/Ti composites were fabricated by spark plasma sintering and subsequent heat treatment, a trace of TiB whisker (TiBw) in-situ formed directionally and modified the Ti-TiC-GNPs multiple interfaces effectively, which acted as the "Threading the Needle" role. Enhanced strength without sacrificing ductility were realized for GNPs-(TiBw)/Ti, which attributed to significant strengthening of GNPs coupled with ruggedized interface bonding. This method provided new insights into the novel microstructural and interfacial engineering strategy, which was responsible for extraordinary property.
- Published
- 2020
29. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/ pure titanium matrix composites
- Author
-
Yecun Wu, Y.X. Ge, H.M. Zhang, R. Shi, Q.B. Fan, Zhihua Wang, Z.H. Zhang, X.N. Mu, D.D. Wang, Fuchi Wang, S. Chang, and H.N. Cai
- Subjects
Materials science ,Graphene ,Composite number ,Spark plasma sintering ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Homogeneous distribution ,0104 chemical sciences ,law.invention ,law ,Ultimate tensile strength ,General Materials Science ,Composite material ,0210 nano-technology ,Dispersion (chemistry) ,Ball mill ,Tensile testing - Abstract
An increasing number of reports have demonstrated enormous strength enhancements in titanium matrix composites (TiMCs) reinforced with graphene nanoflakes (GNFs) on account of the superior mechanical properties of GNFs. Unfortunately, the difficulty of uniform dispersion and severe interfacial reaction are simultaneously the most challenging and serious issues in GNFs reinforced TiMCs. In this work, we applied electroless plating method to prepare Ni decorated GNFs (Ni-GNFs) as a reinforcement in Ti matrix to uniformly disperse the GNFs in Ti matrix and relieve the severe interfacial reaction between metal and carbon nanophase. The composite reinforced by low content Ni-GNFs (0.05 wt%GNFs) exhibiting ultimate strength of 793 MPa (+40% compared to monolithic pure Ti), have been processed by short time ball milling process followed by spark plasma sintering (SPS) and hot-rolling (HR). Enormous strength increase of the composite can be attributed to a homogeneous distribution of Ni-GNFs in the Ti matrix coupled with the formation of special interface (Ti/Ti2Ni/nano-TiCX/Ni-GNFs). The load transfer mechanism of Ni-GNFs in composites was investigated by in-situ tensile test, which shows the great interfacial load transfer capability. This work provides a new strategy for dispersion and interface analysis of GNFs reinforced Ti matrix composites.
- Published
- 2018
30. Observation of ψ(3686)→η′e+e−
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F.F. An, Q. An, J.Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, K. Begzsuren, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, P.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, W. Cheng, X.K. Chu, G. Cibinetto, F. Cossio, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, B. Garillon, I. Garzia, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, A.Q. Guo, R.P. Guo, Y.P. Guo, A. Guskov, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, M. Irshad, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuessner, A. Kupsc, M. Kurth, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, J.W. Li, Jin Li, K.J. Li, Kang Li, Ke Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.L. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, Z.Y. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, T. .Y. Qi, S. Qian, C.F. Qiao, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, X. Shi, J.J. Song, W.M. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, Y.T. Tan, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, Meng Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Z.Q. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Xiaoyu Zhou, Xu Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Dalitz decay ,Nuclear and High Energy Physics ,Meson ,Electron–positron annihilation ,BESIII ,Charmonium ,e+e− Annihilation ,e + e − Annihilation ,01 natural sciences ,Omega ,NO ,law.invention ,e+e−Annihilation ,Nuclear physics ,law ,0103 physical sciences ,010306 general physics ,Collider ,Physics ,010308 nuclear & particles physics ,Generator (category theory) ,Branching fraction ,Pseudoscalar - Abstract
Using a data sample of 448.1 × 10 6 ψ ( 3686 ) events collected with the BESIII detector at the BEPCII collider, we report the first observation of the electromagnetic Dalitz decay ψ ( 3686 ) → η ′ e + e − , with significances of 7.0σ and 6.3σ when reconstructing the η ′ meson via its decay modes η ′ → γ π + π − and η ′ → π + π − η ( η → γ γ ), respectively. The weighted average branching fraction is determined to be B ( ψ ( 3686 ) → η ′ e + e − ) = ( 1.90 ± 0.25 ± 0.11 ) × 10 − 6 , where the first uncertainty is statistical and the second systematic.
- Published
- 2018
31. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy
- Author
-
Fuchi Wang, X.N. Mu, H.M. Zhang, H.N. Cai, Duoduo Wang, Yecun Wu, Y.X. Ge, Ran Shi, S. Chang, Yu Zhou, Q.B. Fan, and Z.H. Zhang
- Subjects
Materials science ,Graphene ,Mechanical Engineering ,Flake ,Spark plasma sintering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,law.invention ,Mechanics of Materials ,law ,Powder metallurgy ,General Materials Science ,Composite material ,0210 nano-technology ,Dispersion (chemistry) ,Ball mill ,Elastic modulus ,Strengthening mechanisms of materials - Abstract
In this study, a micro-laminated structure of titanium matrix composite with uniformly dowel-like and aligned multi-layer graphene (MLG) was fabricated by flake powder metallurgy. Flake ball milling method was applied to efficiently obtain flaky Ti powder with embedded MLGs flakes. Spark plasma sintering (SPS) was applied to consolidate mixed powders, in order to obtain the laminated billet which can enable the MLGs to preserve its original structure. Subsequent hot-rolling (HR) was applied to form the tight interface and reduce the internal defection of composites. Results showed that the composites interface owns in-situ formed TiC layer between MLGs and matrix. Also, the composites with micro-laminated structure showed significant improvement of strength. Consequently, a uniform disperse of MLG enabled the as-designed composites to exhibit 280% increase in yield strength (~2 GPa), 96% increase in nano-hardness and 16% increase in elastic modulus as compared to monolithic flake pure Ti (HR normal direction (ND)). The micro-laminated structure and well-dispersed MLGs were believed to be beneficial to harden and strengthen Ti matrix, and the relevant strengthening mechanisms of the composites were carefully discussed.
- Published
- 2018
32. Measurement of cross section for e+e−→Ξ0Ξ¯0 near threshold
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M.R. An, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, X.Y. Chai, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, X.C. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Y.L. Fan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, M. Fritsch, C.D. Fu, Y. Gao, Y.G. Gao, I. Garzia, P.T. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, T.T. Han, W.Y. Han, X.Q. Hao, F.A. Harris, N. Hüsken, K.L. He, F.H. Heinsius, C.H. Heinz, T. Held, Y.K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, H.B. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, J.S. Li, Ke Li, L.K. Li, Lei Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L. Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.X. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H. Qi, H.R. Qi, K.H. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H.S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D.C. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, M. Shao, C.P. Shen, H.F. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, K.X. Su, P.P. Su, F.F. Sui, G.X. Sun, H.K. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, J.X. Teng, V. Thoren, W.H. Tian, Y.T. Tian, I. Uman, B. Wang, C.W. Wang, D.Y. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Y.Y. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, F. Weidner, S.P. Wen, L.Z. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, G.F. Xu, Q.J. Xu, W. Xu, X.P. Xu, Y.C. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, S.L. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, L. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, null Zeng, Y. Zeng, A.Q. Zhang, B.X. Zhang, Guangyi Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, Shulei Zhang, X.D. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Physics ,Nuclear and High Energy Physics ,Luminosity (scattering theory) ,010308 nuclear & particles physics ,01 natural sciences ,Measure (mathematics) ,Resonance (particle physics) ,Symmetry (physics) ,Nuclear physics ,Cross section (physics) ,Near threshold ,Isospin ,0103 physical sciences ,010306 general physics ,Power function - Abstract
Using e + e − collision data at ten center-of-mass energies between 2.644 and 3.080 GeV collected with the BESIII detector at BEPCII and corresponding to an integrated luminosity of about 500 pb−1, we measure the cross sections and effective form factors for the process e + e − → Ξ 0 Ξ ¯ 0 utilizing a single-tag method. A fit to the cross section of e + e − → Ξ 0 Ξ ¯ 0 with a pQCD-driven power function is performed, from which no significant resonance or threshold enhancement is observed. In addition, the ratio of cross sections for the processes e + e − → Ξ − Ξ ¯ + and Ξ 0 Ξ ¯ 0 is calculated using recent BESIII measurement and is found to be compatible with expectation from isospin symmetry.
- Published
- 2021
33. Investigating effects of bridging water on the binding of neuraminidase−ligands using computational alanine scanning combined with interaction entropy method
- Author
-
Yalong Cong, Shuheng Dong, Song Luo, John Z.H. Zhang, Kaifang Huang, Yuxi Lv, Lili Duan, and Han Wang
- Subjects
Bridging (networking) ,biology ,Binding free energy ,Hydrogen bond ,Ligand ,Chemistry ,02 engineering and technology ,Alanine scanning ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Molecular dynamics ,Crystallography ,Materials Chemistry ,biology.protein ,Physical and Theoretical Chemistry ,0210 nano-technology ,Neuraminidase ,Spectroscopy ,Entropy (order and disorder) - Abstract
Bridging water can form hydrogen bonds with protein and ligand, thus it plays an important role in the binding of protein and ligand. However, the detailed binding mechanism between bridging water and protein−ligand complexes is still unclear. In this study, the effect of bridging water on the binding of neuraminidase (NA) and two ligands (G20 and G28) was investigated using molecular dynamic (MD) simulations and computational alanine scanning combined with the newly developed interaction entropy method. The calculated binding free energy was consistent with the experimental value. Moreover, the rank of calculated binding free energy was in excellent agreement with the experimental rank. Computation analysis showed that the addition of bridging water was beneficial to the binding of NA and ligand, and remarkably enhanced the binding free energy. This is because the existence of bridging water leads to the enhancement in the energy of some residues. Therefore, the number of hot-spot residues also increases after considering bridging water. Our study identified that Leu134, Asp151, Arg152, Trp178, Ile222, Arg224, Glu227, Glu276, Glu277, Arg292 and Tyr406 were the key residues in the neuraminidase−ligand complex. Besides, hydrogen bond analysis showed that bridging water could regulate the hydrogen bond network, and thus could increase the number of hydrogen bonds. It is helpful for enhancing the stability of the complex and is one of the reasons for promoting their binding. These results provide directions and ideas for the design of more effective drugs against neuraminidase in the future.
- Published
- 2021
34. Comparative study on the viscosity modeling of the Ag–Au–Cu liquid alloys
- Author
-
H. Bo, Z.H. Zhang, and Li-Min Wang
- Subjects
010302 applied physics ,Work (thermodynamics) ,Materials science ,General Chemical Engineering ,0211 other engineering and technologies ,Empirical modelling ,Experimental data ,Binary number ,Thermodynamics ,02 engineering and technology ,General Chemistry ,01 natural sciences ,Computer Science Applications ,Viscosity ,0103 physical sciences ,Ternary operation ,021102 mining & metallurgy - Abstract
With the new CALPHAD-type model proposed in our previous work, the viscosity of the Ag–Au–Cu system was re-optimized. Comparisons were made in the calculated viscosities of the Ag–Au and Ag–Cu liquid alloys at 1373 K among different models. It was found that the CALPHAD-type models perform better than the empirical models. The calculated viscosities of the Ag–Au–Cu liquid alloys with and without ternary interaction parameters were both compared with the calculation results of the previous CALPHAD-type model. Considering ternary interaction, the best fitness with the experimental data could be obtained by our model. The good performance in reproducing the measured viscosities of binary and ternary systems evidences the validity of the new model.
- Published
- 2021
35. Microstructure evolution and mechanical properties in 1Cr low alloy steel with different heat treatments
- Author
-
Zilong Zhang, Alan M. Russell, C. X. Zhang, Z.H. Zhang, M. Liu, G.H. Cao, Y.H. Liu, Shusen Wang, and X.M. Dong
- Subjects
Materials science ,Scanning electron microscope ,Alloy steel ,Analytical chemistry ,02 engineering and technology ,engineering.material ,01 natural sciences ,Carbide ,chemistry.chemical_compound ,0103 physical sciences ,General Materials Science ,Tempering ,010302 applied physics ,Quenching ,Cementite ,Mechanical Engineering ,Metallurgy ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,humanities ,chemistry ,Mechanics of Materials ,Transmission electron microscopy ,engineering ,0210 nano-technology - Abstract
This work investigates microstructures, precipitates, and mechanical properties in 1Cr low alloy steel undergoing normalizing, quenching, and quenching-tempering treatments. The precipitated phases in these samples were removed by electrolytic extraction and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The precipitates extracted from the normalized and tempered samples were mainly M 3 C cementite, while the major precipitates obtained from the quenched sample were identified as Nb-rich MC carbides. Energy dispersive X-ray spectroscopy (EDXS) semi-quantitatively analyzed the ratios of Fe atoms to Cr atoms in relevant phases, revealing that redistribution of Cr occurred in the tempering process but not in the normalizing or quenching processes. The tempered sample contained M 3 C carbide with a {022} twin plane and a hexagonal M 7 C 3 -type phase. Strength and elongation in the quenched sample were larger than these in normalized sample, but a significant reduction in strength and a dramatic increase in elongation occurred when the as-quenched sample was tempered.
- Published
- 2017
36. Observation of the decay Λc+→Σ−π+π+π0
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F.F. An, Q. An, J.Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, O. Dorjkhaidav, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, S. Gu, Y.T. Gu, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, P. Kiese, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, G. Morello, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, J.J. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, J.J. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B.T. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.X. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,0103 physical sciences ,Atomic physics ,010306 general physics ,01 natural sciences - Published
- 2017
37. Measurements of cross section of e+e−→pp¯π0 at center-of-mass energies between 4.008 and 4.600 GeV
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, O. Fedorov, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Y. Huang, Z.L. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, M. Shi, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Annihilation ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Partial wave analysis ,Electron–positron annihilation ,Hadron ,Dalitz plot ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,High Energy Physics::Experiment ,Center of mass ,Born approximation ,010306 general physics ,Collider - Abstract
Based on e(+)e(-) annihilation data samples collected with the BESIII detector at the BEPCII collider at 13 center-of-mass energies from 4.008 to 4.600 GeV, measurements of the Born cross section o ...
- Published
- 2017
38. Measurements of the branching fractions for D+→KS0KS0K+, KS0KS0π+ and D0→KS0KS0, KS0KS0KS0
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, O. Fedorov, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Y. Huang, Z.L. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, M. Shi, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,Nuclear and High Energy Physics ,Meson ,010308 nuclear & particles physics ,Electron–positron annihilation ,0103 physical sciences ,Hadron ,Analytical chemistry ,Resonance ,010306 general physics ,Branching (polymer chemistry) ,01 natural sciences - Abstract
By analyzing 2.93 fb − 1 of data taken at the ψ ( 3770 ) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D + → K S 0 K S 0 K + , D + → K S 0 K S 0 π + , D 0 → K S 0 K S 0 and D 0 → K S 0 K S 0 K S 0 . They are determined to be B ( D + → K S 0 K S 0 K + ) = ( 2.54 ± 0.05 s t a t . ± 0.12 s y s . ) × 10 − 3 , B ( D + → K S 0 K S 0 π + ) = ( 2.70 ± 0.05 s t a t . ± 0.12 s y s . ) × 10 − 3 , B ( D 0 → K S 0 K S 0 ) = ( 1.67 ± 0.11 s t a t . ± 0.11 s y s . ) × 10 − 4 and B ( D 0 → K S 0 K S 0 K S 0 ) = ( 7.21 ± 0.33 s t a t . ± 0.44 s y s . ) × 10 − 4 , where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
- Published
- 2017
39. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites
- Author
-
Y. Wu, H.N. Cai, Qunbo Fan, X.N. Mu, Z.J. Fu, H.M. Zhang, Z.H. Zhang, and D.H. Yu
- Subjects
Materials science ,Mechanical Engineering ,Spark plasma sintering ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,01 natural sciences ,0104 chemical sciences ,law.invention ,chemistry ,Magazine ,Mechanics of Materials ,law ,Powder metallurgy ,Ultimate tensile strength ,General Materials Science ,Texture (crystalline) ,Composite material ,Deformation (engineering) ,0210 nano-technology ,Titanium - Abstract
Titanium matrix composites with the discontinuous reinforcement of graphene nanoplatelets (GNPs) were produced by powder metallurgy and subsequent hot-rolling. In the process of spark plasma sintering (SPS), the GNPs were well preserved at low temperature and high compressive pressure. Hot-rolling process was applied to improve the microstructure and properties of the GNPs-Ti matrix composites. The GNPs were uniformly distributed and arranged along with the rolling direction (RD). Also, the GNPs blocked slipping so that the matrix generated {10 1 1} 1 2 > compressive twining to be compatible with deformation in the rolling process with the increase of GNPs content. Tensile strength test demonstrated an excellent ultimate tensile strength that was 54.2% higher than pure titanium with merely 0.1 wt% GNPs addition. The strengthening mechanism of composites was discussed by three main strengthening factors combined with a modified load transfer model and it was thought that the composites were strengthen by grain refinement, load transfer from Ti matrix to GNPs and texture strengthening.
- Published
- 2017
40. Spatial Patterns of China's Major Cities and Their Evolution Mechanisms during the Past Decades of Reform and Opening Up
- Author
-
G.J. Liu, Jie Lv, F. Chen, Yi Yang, Z.H. Zhang, and B.D. Yang
- Subjects
geography.geographical_feature_category ,0211 other engineering and technologies ,Urban morphology ,Urban density ,Urban sprawl ,021107 urban & regional planning ,02 engineering and technology ,General Medicine ,010501 environmental sciences ,Urban area ,01 natural sciences ,Geography ,Urban planning ,Urban climate ,Spatial ecology ,Economic geography ,China ,0105 earth and related environmental sciences - Abstract
This study focused on the patterns of urban sprawl in China's major cities since1978. Information about the major urban built-up areas in China was extracted from the remote sensing images from multiple sources, such as the QuickBird, SPOT and TM, using the soil-vegetation-adjusted building index (SVBI). The trend of urban sprawl was analyzed by measuring the rate of urban expansion and growth rate of urban area. Then qualitative methods were employed to classify the spatial patterns of these cities and discuss the transformation mechanisms of these patterns. The results show that the rates of expansion and area growth in China's major cities were stable between 1984 and 1994 and then sharply increased between 1994 and 2004, followed by a slow-down during 2004-2014. Natural setting was found to be the most essential and limiting factor in a city's morphology. The qualitative analysis suggests that the sprawl patterns of China's major cities were categorized into four groups: circular, leapfrog, interactive and belt-like patterns. Besides, traffic can guide the direction of urban sprawl. It was considered an important factor in urban sprawl and a determining factor in the transformation of urban morphology. Technological, socio-economic development was proved to have played a key role in the development of urban morphology and have acted as the greatest power for cities to withstand the impact of natural setting on their morphology. Moreover, city-industry integration and administrative divisions have also affected the development of spatial patterns of these cities. They have altered the internal links between different parts of a city and the driving forces behind urban development, facilitating formation of new spatial patterns. The findings about urban morphology and its transformation mechanisms can provide a scientific basis for cities to efficiently raise their management levels and formulate more rational plans for urban-space use.
- Published
- 2017
41. Effects of coated proteases on the performance, nutrient retention, gut morphology and carcass traits of broilers fed corn or sorghum based diets supplemented with soybean meal
- Author
-
Haibo Wang, X.K. Ma, Z.H. Zhang, S.F. Long, Y.T. Xu, Xianhua Piao, Q.Y. Tian, X. Xu, and L. Pan
- Subjects
0301 basic medicine ,Proteases ,Protease ,Gut morphology ,medicine.medical_treatment ,digestive, oral, and skin physiology ,Soybean meal ,0402 animal and dairy science ,food and beverages ,04 agricultural and veterinary sciences ,Biology ,Sorghum ,biology.organism_classification ,040201 dairy & animal science ,03 medical and health sciences ,030104 developmental biology ,Nutrient ,Starter ,medicine ,Animal Science and Zoology ,Dry matter ,Food science - Abstract
The effects of proteases on the performance, nutrient retention, gut morphology and carcass traits of broilers fed corn or sorghum based diets supplemented with soybean meal were studied in this experiment. A total of 256 male Arbor Acre broilers (one-day-old and weighing 43.8 ± 1.31 g) were randomly allotted to 1 of 4 treatments in a 2 × 2 factorial arrangement that included diet type (corn vs. sorghum) and protease supplementation (0 vs. 150 mg/kg). The feeding program consisted of a starter diet fed from d 1 to 21 and a finisher diet fed from d 22 to 42. Supplementation of protease significantly increased the ADG of broilers during the finisher phase (P 0.05). From d 19 to 21, the AME and DM, GE and nitrogen retention were all increased by supplementation with protease (P
- Published
- 2017
42. Corrigendum to 'Measurement of the e+e− → π+π− cross section between 600 and 900 MeV using initial state radiation' [Phys. Lett. B 753 (2016) 629–638]
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, X.C. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Gao, Y.G. Gao, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, T.T. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, C.H. Heinz, T. Held, Y.K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.B. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, M.H. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, W.M. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.X. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H.R. Qi, K.H. Qi, M. Qi, T.Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H.S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D.C. Shan, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, K.X. Su, F.F. Sui, G.X. Sun, H.K. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, J.X. Teng, V. Thoren, I. Uman, B. Wang, C.W. Wang, D.Y. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, G.F. Xu, J.J. Xu, Q.J. Xu, W. Xu, X.P. Xu, Y.C. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, L. Yuan, W. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, Guangyi Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S.F. Zhang, Shulei Zhang, X.D. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Covariance matrix ,BESIII ,Hadronic cross section ,01 natural sciences ,Pion form factor ,lcsh:QC1-999 ,NO ,0103 physical sciences ,Initial state radiation ,010306 general physics ,Muon anomaly ,lcsh:Physics - Abstract
In Ref. [1] the BESIII collaboration published a cross section measurement of the process e+e−→π+π− in the energy range between 600 and 900 MeV. In this corrigendum, we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as aμππ,LO(600−900MeV)=(368.2±1.5stat±3.3syst)×10−10. The central values of the cross section measurement and of aμππ,LO, as well as the systematic uncertainties remain unchanged.
- Published
- 2021
43. Cracking analysis of a newly built gas transmission steel pipe
- Author
-
Nan Ding, Ding Han, Q. Feng, Z.H. Zhang, Z.F. Yan, Y.J. Sun, Qi Guoquan, Dongtao Qi, Houbu Li, Wei Bin, and F.S. Wang
- Subjects
Materials science ,business.industry ,education ,General Engineering ,020101 civil engineering ,02 engineering and technology ,Welding ,0201 civil engineering ,law.invention ,Cracking ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Optical microscope ,law ,Nondestructive testing ,mental disorders ,Ultimate tensile strength ,Vickers hardness test ,Fracture (geology) ,General Materials Science ,Composite material ,Slag (welding) ,business - Abstract
A longitudinal crack was found in the welding seam during the X-ray inspection of a newly built L245NS gas transmission pipeline in China western oilfield. The crack causes were analyzed by the nondestructive tester (NDT), direct-reading spectrometer, tensile strength test machine, impact test machine, Vickers hardness tester, optical microscope (OM), macroscopic fracture morphology, scanning electron microscopy (SEM) and energy spectrum analysis(EDS) in this paper. The results show that the crack is caused by the original defect. First, the fracture surface of the crack is characterized by multi-source cracking, and the origin of the crack is containing foreign matters. Second, the surface of crack fracture is blue, which indicates that the crack fracture has experienced high-temperature burning, so the crack may be formed before heat treatment. The main reason for steel pipe crack is the low stress cracking at the pipe end by the “slag inclusion” formed in the pipe body when the pipe is processing.
- Published
- 2020
44. A new model on the viscosities of the Zr–Cu–Al liquid alloys
- Author
-
J.L. Hu, Z.H. Zhang, H. Bo, and Li-Min Wang
- Subjects
010302 applied physics ,Arrhenius equation ,Amorphous metal ,Materials science ,General Chemical Engineering ,0211 other engineering and technologies ,Thermodynamics ,02 engineering and technology ,General Chemistry ,Liquidus ,01 natural sciences ,Computer Science Applications ,Physics::Fluid Dynamics ,Viscosity ,symbols.namesake ,0103 physical sciences ,symbols ,Ternary operation ,CALPHAD ,021102 mining & metallurgy ,Phase diagram - Abstract
A new model for the viscosities of multi-component liquid alloys has been proposed within the framework of the CALPHAD (CALculation and PHAse Diagram) method. Unlike the previous CALPHAD-type modeling, the viscosity is described by the Arrhenius equation and the interaction of ternary components could be considered when necessary. With this model, the viscosities of the Zr–Cu–Al liquid alloys were optimized based on the experimental data and the viscosities at liquidus temperatures were calculated over the entire composition range. By analyzing the calculated viscosities of the reported metallic glasses, it is found that alloys with a high glass-forming ability usually possess a viscosity larger than 0.01 Pa⋅s at liquidus temperature.
- Published
- 2020
45. Measurement of the leptonic decay width of J/ψ using initial state radiation
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.N. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, J.H. Zou, Research unit Nuclear & Hadron Physics, Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü., Tapan, İlhan, Doğuş Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, TR3959, Çetin, Serkant Ali, BESIII Collaboration, and İstanbul Arel Üniversitesi
- Subjects
Particle physics ,Nuclear and High Energy Physics ,Electron–positron annihilation ,BESIII ,Electronic width ,Initial state radiation ,J/ψ resonance ,Radiation ,01 natural sciences ,law.invention ,High Energy Physics - Experiment ,NO ,Nuclear physics ,E(+)E(-) COLLISIONS ,Charmonium ,Drift Chambers ,Branching ,law ,J/psi resonance ,0103 physical sciences ,Fysik ,ddc:530 ,Physics, nuclear ,010306 general physics ,Collider ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Branching fraction ,State (functional analysis) ,J/? resonance ,FINAL-STATES ,lcsh:QC1-999 ,Physical Sciences ,Astronomy & astrophysics ,Physics, particles & fields ,High Energy Physics::Experiment ,CROSS-SECTION ,lcsh:Physics - Abstract
Physics letters / B 761, 98 - 103(2016). doi:10.1016/j.physletb.2016.08.011, Using a data set of 2.93 fb$^{-1}$ taken at a center-of-mass energy of $\sqrt{s}$ = 3.773 GeV with the BESIII detector at the BEPCII collider, we measure the process $e^+e^-\rightarrow J/\psi\gamma\rightarrow \mu^+\mu^-\gamma$ and determine the product of the branching fraction and the electronic width $\mathcal B_{\mu\mu}\cdot \Gamma_{ee} = (333.4 \pm 2.5_{\rm stat} \pm 4.4_{\rm sys})$~eV. Using the earlier-published BESIII result for $\mathcal B_{\mu\mu}$ = (5.973 $\pm$ 0.007$_{\rm stat}$ $\pm$ 0.037$_{\rm sys}$)\%, we derive the $J/\psi$ electronic width $\Gamma_{ee}$~= (5.58 $\pm$ 0.05$_{\rm stat}$ $\pm$ 0.08$_{\rm sys}$) keV., Published by North-Holland Publ., Amsterdam
- Published
- 2016
- Full Text
- View/download PDF
46. Impact of static biocarriers on the microbial community, nitrogen removal and membrane fouling in submerged membrane bioreactor at different COD:N ratios
- Author
-
Jiaheng Zhou, Jingbo Yu, Hui Wang, Q.Q. Ye, K.M. Wang, Z.H. Zhang, Q.K. Hong, S.F. Jiang, and Ya-Qin Zhang
- Subjects
0106 biological sciences ,Environmental Engineering ,Rhodocyclaceae ,Nitrogen ,chemistry.chemical_element ,Bioengineering ,010501 environmental sciences ,Membrane bioreactor ,Waste Disposal, Fluid ,01 natural sciences ,Membrane technology ,Bioreactors ,010608 biotechnology ,Waste Management and Disposal ,0105 earth and related environmental sciences ,Sewage ,biology ,Renewable Energy, Sustainability and the Environment ,Microbiota ,Membrane fouling ,Membranes, Artificial ,General Medicine ,biology.organism_classification ,chemistry ,Microbial population biology ,Chemical engineering ,Denitrification ,Particle size ,Carbon - Abstract
The polyvinyl formal (PVFM) biocarrier addition in a membrane bioreactor (MBR) was evaluated at high and low carbon/nitrogen (C/N) ratio of 20.0 and 6.7. Results indicated that static biocarrier addition could enrich nitrification and denitrification bacteria, dominating by Tauera, Amaricoccus and Nitrosospira at the genus level and slightly improved the total nitrogen removal even at a low C/N ratio. The bulk sludge characteristics (such as bigger particle size, lower SMP, lower SMP P/C) were also significantly changed in the hybrid MBR (HMBR), leading to a more sustainable membrane operation. The biocarrier addition also reduced the relative abundance of Sphingobacterials_unclassified, Ohtaekwangia and Rhodocyclaceae_unclassified at the genus level, indicating less membrane fouling in the HMBR. Consequently, HMBR with static PVFM addition could partially overcome the drawback of low C/N ratio for total nitrogen removal and membrane fouling control, providing a more resilient MBR to the undesirable environment such as low C/N ratio.
- Published
- 2020
47. Measurement of the branching fractions of Ds+→η′X and Ds+→η′ρ+ in e+e−→Ds+Ds−
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kühn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.N. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,Nuclear and High Energy Physics ,Meson ,010308 nuclear & particles physics ,Branching fraction ,Electron–positron annihilation ,Analytical chemistry ,Branching (polymer chemistry) ,01 natural sciences ,Nuclear physics ,0103 physical sciences ,Pi ,High Energy Physics::Experiment ,Nuclear Experiment ,010306 general physics - Abstract
We study D-s(+) decays to final states involving the eta' with a 482 pb(-1) data sample collected at root s = 4.009 GeV with the BESIII detector at the BEPCII collider. We measure the branching fractions B(D-s(+) -> eta'X) = (8.8 +/- 1.8 +/- 0.5)% and B(D-s(+) > eta'rho(+)) = (5.8 +/- 1.4 +/- 0.4)% where the first uncertainty is statistical and the second is systematic. In addition, we estimate an upper limit on the non-resonant branching ratio B(D-s(+) -> eta'pi(+)pi(0)) eta'rho(+)). (C) 2015 The Authors. Published by Elsevier B.V.
- Published
- 2015
48. An improved limit for Γee of X(3872) and Γee measurement of ψ(3686)
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, O. Bondarenko, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, D. Cronin-Hennessy, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kühn, A. Kupsc, W. Lai, J.S. Lange, M. Lara, P. Larin, C. Leng, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, S. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, D. Toth, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, Q.J. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,Physics::General Physics ,Nuclear and High Energy Physics ,Particle physics ,Photon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Branching fraction ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Quantum number ,01 natural sciences ,Nuclear physics ,0103 physical sciences ,High Energy Physics::Experiment ,Statistical analysis ,Limit (mathematics) ,Nuclear Experiment ,010306 general physics ,Storage ring ,X(3872) - Abstract
Using the data sets taken at center-of-mass energies above 4 GeV by the BESIII detector at the BEPCII storage ring, we search for the reaction e(+)e(-) -> gamma(ISR) X(3872) -> gamma(ISR)pi(+ ...
- Published
- 2015
49. Study on spin polarization of non-magnetic atom in diluted magnetic semiconductor: The case of Al-doped 4H–SiC
- Author
-
L. Lin, Z.H. Zhang, X. He, Bo Song, and Ming He
- Subjects
Spin polarization ,Condensed matter physics ,Chemistry ,Magnetism ,Electron magnetic circular dichroism ,General Chemistry ,Magnetic semiconductor ,Condensed Matter Physics ,Condensed Matter::Materials Science ,Magnetization ,Paramagnetism ,Ferromagnetism ,X-ray magnetic circular dichroism ,Materials Chemistry ,Condensed Matter::Strongly Correlated Electrons - Abstract
Determining the atomic origin of magnetism in non-magnetic elements doped dilute magnetic semiconductors (DMS) is a key issue to understand the room temperature ferromagnetism. Here, using electron magnetic circular dichroism (EMCD), an element-selectivity and high spatial resolution technique, we provide unambiguous experimental evidence: spin polarization of carbon atoms contributes to the local magnetic moments of Al-doped 4H–SiC DMS. The result is further confirmed by first-principle calculations.
- Published
- 2014
50. Measurement of the D→K−π+ strong phase difference in ψ(3770)→D0D¯0
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, J.M. Bian, E. Boger, O. Bondarenko, I. Boyko, S. Braun, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, Y.P. Chu, D. Cronin-Hennessy, H.L. Dai, J.P. Dai, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, W.M. Ding, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, J.Z. Fan, J. Fang, S.S. Fang, Y. Fang, L. Fava, C.Q. Feng, C.D. Fu, O. Fuks, Q. Gao, Y. Gao, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, L.B. Guo, T. Guo, Y.P. Guo, Z. Haddadi, Y.L. Han, F.A. Harris, K.L. He, M. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, L. Huang, X.T. Huang, Y. Huang, T. Hussain, C.S. Ji, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B. Kloss, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, W. Lai, J.S. Lange, M. Lara, P. Larin, M. Leyhe, C.H. Li, Cheng Li, Cui Li, D. Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.J. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, D.X. Lin, B.J. Liu, C.L. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.P. Liu, K. Liu, K.Y. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, G.R. Lu, H.J. Lu, H.L. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, Q.M. Ma, S. Ma, T. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, H. Moeini, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, M. Pelizaeus, H.P. Peng, K. Peters, J.L. Ping, R.G. Ping, R. Poling, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, X.D. Ruan, A. Sarantsev, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, X.Y. Shen, H.Y. Sheng, M.R. Shepherd, W.M. Song, X.Y. Song, S. Spataro, B. Spruck, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, D. Toth, M. Ullrich, I. Uman, G.S. Varner, B. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, Q.J. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, M. Werner, U. Wiedner, M. Wolke, L.H. Wu, N. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, Z. Xue, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, S.P. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, S.L. Zang, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.B. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, S.H. Zhang, X.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, X.H. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Phase difference ,Physics ,Nuclear and High Energy Physics ,media_common.quotation_subject ,Electron–positron annihilation ,Quantum mechanics ,Analytical chemistry ,Pi ,CP violation ,7. Clean energy ,Asymmetry ,media_common - Abstract
We study D 0 D ¯ 0 pairs produced in e + e − collisions at s = 3.773 GeV using a data sample of 2.92 fb−1 collected with the BESIII detector. We measured the asymmetry A K π CP of the branching fractions of D → K − π + in CP-odd and CP-even eigenstates to be ( 12.7 ± 1.3 ± 0.7 ) × 10 − 2 . A K π CP can be used to extract the strong phase difference δ K π between the doubly Cabibbo-suppressed process D ¯ 0 → K − π + and the Cabibbo-favored process D 0 → K − π + . Using world-average values of external parameters, we obtain cos δ K π = 1.02 ± 0.11 ± 0.06 ± 0.01 . Here, the first and second uncertainties are statistical and systematic, respectively, while the third uncertainty arises from the external parameters. This is the most precise measurement of δ K π to date.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.