1. Reversible covalent nanoassemblies for augmented nuclear drug translocation in drug resistance tumor
- Author
-
Chun-Nan Zhu, Mei-Yu Lv, Fei Song, Dong-Yun Zheng, Chao Liu, Xiao-Jun Liu, Dong-Bing Cheng, and Zeng-Ying Qiao
- Subjects
Pharmaceutical Science - Abstract
The drug efflux by P-glycoprotein (P-gp) is the primary contributor of multidrug resistance (MDR), which eventually generates insufficient nuclear drug accumulation and chemotherapy failure. In this paper, reversible covalent nanoassemblies on the basis of catechol-functionalized methoxy poly (ethylene glycol) (mPEG-dop) and phenylboronic acid-modified cholesterol (Chol-PBA) are successfully synthesized for delivery of both doxorubicin (DOX, anti-cancer drug) and tariquidar (TQR, P-glycoprotein inhibitor), which shows efficient nuclear DOX accumulation for overcoming tumor MDR. Through naturally forming phenylboronate linkage in physiological circumstances, Chol-PBA is able to bond with mPEG-dop. The resulting conjugates (PC) could self-assemble into reversible covalent nanoassemblies by dialysis method, and transmission electron microscopy analysis reveals the PC distributes in nano-scaled spherical particles before and after drug encapsulation. Under the assistance of Chol, PC can enter into lysosome of tumor cells via low-density lipoprotein (LDL) receptor-mediated endocytosis. Then the loaded TQR and DOX are released in acidic lysosomal compartments, which inhibit P-gp mediated efflux and elevate nuclear accumulation of DOX, respectively. At last, this drug loaded PC nanoassemblies show significant tumor suppression efficacy in multidrug-resistant tumor models, which suggests great potential for addressing MDR in cancer therapy.
- Published
- 2023
- Full Text
- View/download PDF