1. Extending information maximization from a rate-distortion perspective
- Author
-
Junjie Hu, Takayuki Okatani, and Yan Zhang
- Subjects
0209 industrial biotechnology ,Computer science ,Cognitive Neuroscience ,Perspective (graphical) ,Data compression ratio ,02 engineering and technology ,Maximization ,Computer Science Applications ,Constraint (information theory) ,Rate–distortion theory ,020901 industrial engineering & automation ,Artificial Intelligence ,Distortion ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Infomax ,Algorithm - Abstract
In this paper, we propose a new interpretation of the information maximization method (InfoMax) from a perspective of the rate distortion theory. We show that under specific conditions, InfoMax is equivalent to the minimization of a compression rate under the constraint of zero distortion. Zero distortion, or equivalently, zero reconstruction error between the input and its reconstruction, does not provide meaningful solutions in many cases. Based on the new interpretation, we extend InfoMax to be able to deal with non-zero distortion and also to learn under/over-complete representations. Experimental results on synthetic as well as real data show the effectiveness of our method.
- Published
- 2020