1. The Plateau problem from the perspective of optimal transport
- Author
-
Petru Mironescu, Haim Brezis, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics - Rutgers School of Arts and Sciences, Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers), Department of Mathematics (TECHNION), Technion - Israel Institute of Technology [Haifa], Équations aux dérivées partielles, analyse (EDPA), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
2010 AMS classification subject. 49N15, 49Q05 ,Minimal surface ,Krein-Milman ,010102 general mathematics ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,General Medicine ,01 natural sciences ,Plateau's problem ,Perspective (geometry) ,Monge-Kantorovich ,0103 physical sciences ,Optimal transport ,010307 mathematical physics ,extreme points ,0101 mathematics ,Extreme point ,Mathematical economics ,Plateau problem ,Mathematics - Abstract
International audience; Both optimal transport and minimal surfaces have received much attention in recent years. We show that the methodology introduced by Kantorovich on the Monge problem can, surprisingly, be adapted to questions involving least area, e.g. Plateau type problems as investigated by Federer.
- Published
- 2019
- Full Text
- View/download PDF