1. α-synuclein and phosphoinositide-binding proteins: α-synuclein inhibits the association of PX- but not FYVE-containing proteins with vesicles in vivo
- Author
-
Santhanasabapathy Rajasekaran, Dhaval Patel, and Stephan N. Witt
- Subjects
Saccharomyces cerevisiae Proteins ,Endosomal Sorting Complexes Required for Transport ,Biophysics ,Endosomes ,Saccharomyces cerevisiae ,Cell Biology ,Phosphatidylinositols ,Biochemistry ,Article ,Phosphatidylinositol Phosphates ,Protein Domains ,alpha-Synuclein ,Humans ,Carrier Proteins ,Oxazoles ,Molecular Biology - Abstract
By an unknown mechanism, alpha-synuclein (α-syn) inhibits autophagy in yeast and human cells. Herein, using the yeast Saccharomyces cerevisiae, we tested the hypothesis that α-syn disrupts autophagy by inhibiting the required association of sorting nexin 4 (Snx4) with phagophores. Snx4 contains a phox (PX) homology domain that selectively binds membranes enriched in phosphatidylinositol 3-phosphate (PI3P). Using fluorescence microscopy, we show that upon nitrogen starvation, 70% of the cells exhibited green puncta (phagophores); whereas identically treated cells expressing α-syn exhibited a significantly lower percentage of cells (30%) with such puncta. Our interpretation is that α-syn outcompetes Snx4 for binding to membranes enriched in PI3P, resulting in fewer phagophores and consequently inefficient induction of autophagy. As a control, we tested whether α-syn disrupts the binding of Vps27-GFP to late endosomes/multivesicular bodies (MVBs). Vps27 contains a PI3P-binding domain called FYVE. α-Syn did not disrupt the binding of Vps27-GFP to late endosomes. α-Syn likely inhibits the binding of PX- but not FYVE-containing proteins to PI3P because FYVE domains bind more than two-orders of magnitude tighter than PX domains. We propose that in all cells, whether yeast or human, α-syn has the potential to inhibit protein trafficking pathways that are dependent on PX-domain proteins such as sorting nexins.
- Published
- 2022