1. Quadratic function based price adjustment strategy on monitoring process of power consumption load in smart grid
- Author
-
Liting Zhu, Junxiang Li, Bingjie He, Dongjun Li, and Jing-Xin Dong
- Subjects
Consumption (economics) ,Mathematical optimization ,Computer science ,Electricity pricing ,Energy Engineering and Power Technology ,Quadratic function ,Supply and demand ,Power (physics) ,Demand response ,Electric power system ,Smart grid ,N300 ,N100 ,Electrical and Electronic Engineering - Abstract
Based on the data collected from smart meters, electricity pricing models can be developed to balance power supply and demand in each time slot and obtain the optimal consumption loads and prices. However, in real life, users’ reserved consumption requirement loads sometimes deviate significantly from the optimal consumption loads obtained from models, which results in overloaded power systems or even power cuts. To address this issue, an Engineering Process Control monitoring strategy has been proposed in this paper to minimize the difference between the optimal and the users’ reserved consumption requirement loads. We proposed an exponential weighted moving average model to predict the load difference in future time slots, and also developed a novel quadratic function based demand response mechanism to adjust the power price for power providers. The demand response mechanism can be used to adjust the price in the future time slots when the predicted demand exceeds the upper or lower boundary. Simulation results indicate that the quadratic function adjustment strategy has excellent performance in a practical power market in Singapore. Compared with the linear function based adjustment method, the proposed quadratic function based adjustment method decreases the adjustment times and standard errors of residuals, and increases the social welfare and power suppliers’ profits under the same boundary conditions. In addition, the performance of the proposed strategy demonstrated its competency in peak-cutting and valley-filling and balancing energy provision with demands.
- Published
- 2022