1. Downregulation of surface AMPA receptor expression in the striatum following prolonged social isolation, a role of mGlu5 receptors
- Author
-
Li-Min, Mao, Nirav, Mathur, and John Q, Wang
- Subjects
General Neuroscience - Abstract
Major depressive disorder is a common and serious mood illness. The molecular mechanisms underlying the pathogenesis and symptomatology of depression are poorly understood at present. Multiple neurotransmitter systems are believed to be implicated in depression. Increasing evidence supports glutamatergic transmission as a critical element in depression and antidepressant activity. In this study, we investigated adaptive changes in expression of AMPA receptors in a key limbic reward structure, the striatum, in response to an anhedonic model of depression. Prolonged social isolation in adult rats caused anhedonic/depression- and anxiety-like behavior. In these depressed rats, surface levels of AMPA receptors, mainly GluA1 and GluA3 subunits, were reduced in the nucleus accumbens (NAc). Surface GluA1/A3 expression was also reduced in the caudate putamen (CPu) following chronic social isolation. No change was observed in expression of presynaptic synaptophysin, postsynaptic density-95, and dendritic microtubule-associated protein 2 in the striatum. Noticeably, chronic treatment with the metabotropic glutamate (mGlu) receptor 5 antagonist MTEP reversed the reduction of AMPA receptors in the NAc and CPu. MTEP also prevented depression- and anxiety-like behavior induced by social isolation. These data indicate that adulthood prolonged social isolation induces the adaptive downregulation of GluA1/A3-containing AMPA receptor expression in the limbic striatum. mGlu5 receptor activity is linked to this downregulation, and antagonism of mGlu5 receptors produces an antidepressant effect in this anhedonic model of depression.
- Published
- 2022