1. Geometry determination and refinement in the rotation electron diffraction technique
- Author
-
Andreas Delimitis, V. Hansen, and J. Gjønnes
- Subjects
Diffraction ,Materials science ,Geometry ,02 engineering and technology ,01 natural sciences ,Beam tilt ,0103 physical sciences ,rotation electron diffraction ,Instrumentation ,010302 applied physics ,thermoelectric materials ,dynamical diffraction ,021001 nanoscience & nanotechnology ,structure determination ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Technology: 500::Materials science and engineering: 520 [VDP] ,Kikuchi lines ,Electron diffraction ,0210 nano-technology ,Kikuchi line ,Rotation (mathematics) ,Excitation ,Beam (structure) ,Bloch wave - Abstract
The necessary parameters (rotation axis, incident electron beam direction and beam tilt path) in order to describe the diffraction geometry in the Rotation Electron Diffraction (RED) method during data collection are determined and refined. These parameters are prerequisites for the subsequent calculations of excitation errors, sg, for zero (ZOLZ) or higher order Laue zones (HOLZ) reflections. Comparison with simulated results, for a CoP3 thermoelectric crystal, shows excellent agreement between the two approaches -calculated and simulated. In addition to their determination, a thorough refinement methodology for the incident electron beam direction and beam tilt path has been applied, too, based on Kikuchi lines of HOLZ reflections. Incorporation of the refined excitation error values can be considered both in theoretical calculations for diffracted beam intensities, based on the Bloch wave method, as well as in deducing integrated intensities from experimental rocking curves. The methodology described in this study is quite indispensable, as it forms an essential step for performing dynamical calculations in RED, enabling thus enhanced accuracy in structural parameter clarification. The latter is especially important in the case of thermal factors refinement for e.g. thermoelectrics, which are imperative for material properties’ evaluation.
- Published
- 2019
- Full Text
- View/download PDF