1. Partial corepresentations of Hopf algebras
- Author
-
Joost Vercruysse, Felipe Nalon Castro, Marcelo Muniz S. Alves, Glauber Quadros, and Eliezer Batista
- Subjects
Pure mathematics ,Partial comodules ,Algèbre linéaire et matricielle ,Existential quantification ,Coalgebra ,Structure (category theory) ,Partial corepresentation ,01 natural sciences ,Algèbre - théorie des anneaux - théorie des corps ,Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,Mathematics::Quantum Algebra ,Hopf coalgebroid ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Partial cosmash coproducts ,Quantum Algebra (math.QA) ,Category Theory (math.CT) ,Bicoalgebroid ,Representation Theory (math.RT) ,0101 mathematics ,16T05, 16S40 ,Mathematics ,Algebra and Number Theory ,Mathematics::Rings and Algebras ,010102 general mathematics ,Mathematics - Category Theory ,Mathematics - Rings and Algebras ,Hopf algebra ,Partial modules ,Partial representation ,Rings and Algebras (math.RA) ,010307 mathematical physics ,Groupes algébriques ,Géométrie non commutative ,Mathematics - Representation Theory - Abstract
We introduce the notion of a partial corepresentation of a given Hopf algebra H over a coalgebra C and the closely related concept of a partial H-comodule. We prove that there exists a universal coalgebra Hpar, associated to the original Hopf algebra H, such that the category of regular partial H-comodules is isomorphic to the category of Hpar-comodules. We introduce the notion of a Hopf coalgebroid and show that the universal coalgebra Hpar has the structure of a Hopf coalgebroid over a suitable coalgebra., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2021