1. A new approach for the delivery of artemisinin: Formulation, characterization, and ex-vivo antileishmanial studies
- Author
-
Asoke P. Chattopadhyay, Muzamil Y Want, Mohammad Islamuddin, Anjan Kumar Dasgupta, Garima Chouhan, and Farhat Afrin
- Subjects
Antiprotozoal Agents ,Nanoparticle ,Pharmacology ,Biomaterials ,Mice ,chemistry.chemical_compound ,Drug Delivery Systems ,Colloid and Surface Chemistry ,Polylactic Acid-Polyglycolic Acid Copolymer ,Dynamic light scattering ,parasitic diseases ,Zeta potential ,medicine ,Animals ,Humans ,MTT assay ,Lactic Acid ,Artemisinin ,Mice, Inbred BALB C ,Chemistry ,Hydrogen-Ion Concentration ,Artemisinins ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,PLGA ,Macrophages, Peritoneal ,Leishmaniasis, Visceral ,Nanomedicine ,Female ,Polyglycolic Acid ,Ex vivo ,Leishmania donovani ,Nuclear chemistry ,medicine.drug - Abstract
Hypothesis Artemisinin, a potential antileishmanial compound with poor bioavailability and stability has limited efficacy in visceral leishmaniasis. Encapsulating artemisinin into poly lactic-co glycolic nanoparticles may improve its effectiveness and reduce toxicity. Experiments Artemisinin-loaded nanoparticles were prepared, optimized (using Box–Behnken design) and characterized by dynamic light scattering technique, Atomic force microscopy (AFM), Transmission electron microscopy (TEM) and Fourier Transform-Infra Red spectroscopy. Release kinetics of artemisinin from optimized nanoformulation was studied by dialysis method at pH 7.4 and 5.5. Cytotoxicity and antileishmanial activity of these nanoparticles was tested on murine macrophages by MTT assay and macrophage-infested Leishmania donovani amastigotes ex vivo , respectively. Findings Artemisinin-loaded nanoparticles were 221 ± 14 nm in diameter, with polydispersity index, zeta potential, drug loading and entrapment efficiency of 0.1 ± 0.015, −9.07 ± 0.69 mV, 28.03 ± 1.14 and 68.48 ± 1.97, respectively. AFM and TEM studies indicated that the particles were spherical in shape. These colloidal particles showed a sustained release pattern in vitro . Treatment with artemisinin-loaded nanoparticles significantly reduced the number of amastigotes per macrophage and percent infected macrophages ex vivo compared to free artemisinin. These nanoparticles were also non-toxic to macrophages compared to artemisinin alone.
- Published
- 2014
- Full Text
- View/download PDF