1. CONTROL OF CHAOTIC ADVECTION
- Author
-
Cristel Chandre, Tounsia Benzekri, Michel Vittot, Arnaud Goullet, Nadine Aubry, Ricardo Lima, Xavier Leoncini, Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Department of Mechanical Engineering, New Jersey Institute of Technology [Newark] (NJIT), and Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
- Subjects
Advection ,Synchronization of chaos ,dynamique Hamiltonienne ,Chaotic ,FOS: Physical sciences ,Nonlinear Sciences - Chaotic Dynamics ,01 natural sciences ,010305 fluids & plasmas ,Hamiltonian system ,Nonlinear Sciences::Chaotic Dynamics ,Chaotic mixing ,Classical mechanics ,Phase space ,[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] ,0103 physical sciences ,Stream function ,contrôle du chaos ,Chaotic Dynamics (nlin.CD) ,Invariant (mathematics) ,010306 general physics ,Mathematics::Symplectic Geometry ,Mathematics - Abstract
A method of chaos reduction for Hamiltonian systems is applied to control chaotic advection. By adding a small and simple term to the stream function of the system, the construction of invariant tori has a stabilization effect in the sense that these tori act as barriers to diffusion in phase space and the controlled Hamiltonian system exhibits a more regular behaviour.
- Published
- 2006
- Full Text
- View/download PDF