1. A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions
- Author
-
Pablo Jimenéz-Calvo, Mario J. Muñoz-Batista, Mark Isaacs, Vinavadini Ramnarain, Dris Ihiawakrim, Xiaoyan Li, Miguel Ángel Muñoz-Márquez, Gilberto Teobaldi, Mathieu Kociak, Erwan Paineau, Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), HarwellXPS EPSRC, Department of Chemistry [University College of London], University College of London [London] (UCL), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), School of Science and Technology [Camerino], Università degli Studi di Camerino = University of Camerino (UNICAM), Scientific Computing Department, STFC, University of Southampton, ANR-18-CE09-0001,C3PO,Confinement et photocatalyse dans des nanotubes polarisés(2018), ANR-10-EQPX-0050,TEMPOS,Microscopie electronique en transmission sur le plateau Palaiseau Orsay Saclay(2010), and European Project: 101068996,LASERION
- Subjects
photocatalytic hydrogen ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,General Chemical Engineering ,Photonic profile ,co-catalysts ,Photoreactor ,Environmental Chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Chemistry ,Schottky junctions ,Industrial and Manufacturing Engineering - Abstract
International audience; The configuration and geometry of chemical reactors underpins the accuracy of performance evaluation for photocatalytic materials and, accordingly, the development and validation of thermodynamic and kinetic model reactions. The lack of accurate photonic, mass, and heat transport profiles for photochemical reactors hinder standardization, scale-up, and ultimately comparison between different experiments. This work proposes two contributions at the interface between engineering of chemical process and materials science: (A) an automated compact stainless-steel photoreactor with 40 cm3 and 65 cm2 of volume and area, respectively, for hydrogen photoproduction as a model reaction and (B) the synthesis, characterization, and performance of TiO2 Schottky junctions, using Pd, Pt, or Au nanoparticles (ca. 0.5, 1, 2wt.% loadings each) to validate the operation of the reactor. A photonic profile methodology is implemented to the studied reactor to obtain the local light absorption profile, opening up for evaluation of the local quantum yield calculation for the selected materials. A combination of transmission electron microscopy, (X-ray/ultraviolet) photoelectron/electron, energy loss/infrared spectroscopies, X-ray scattering, inductively coupled plasma atomic emission spectroscopy, and ultraviolet-visible spectrophotometry is employed to determine the distinctive surface and bulk properties to build structure-function correlations. The (Pd, Pt, Au)/TiO2 Schottky junction exhibits H2 production rates slightly higher than previous studies, with quantum yields almost 2-fold higher than reported values. These results, demonstrate that the proposed novel geometry of the photoreactor improves the photonic, heat, and mass profiles. An in-depth analysis of the Au plasmon was investigated coupling electron energy loss spectroscopy, UV-vis, and transmission electron microscope, resulting in insightful information about the Au NP mode at the TiO2 interface.
- Published
- 2023
- Full Text
- View/download PDF