1. Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration
- Author
-
Sam Dupont, Xizhi Huang, Yanming Sui, Menghong Hu, Jiale Li, Hans-Otto Pörtner, Weiqun Lu, Fangli Wu, Yueyong Shang, Daniela Storch, and Youji Wang
- Subjects
Gills ,0106 biological sciences ,China ,animal structures ,Health, Toxicology and Mutagenesis ,010501 environmental sciences ,Biology ,01 natural sciences ,Antioxidants ,Superoxide dismutase ,Hemolymph ,Animals ,Food science ,0105 earth and related environmental sciences ,Mytilus ,chemistry.chemical_classification ,Glutathione Peroxidase ,Superoxide Dismutase ,Ecology ,010604 marine biology & hydrobiology ,Glutathione peroxidase ,fungi ,Public Health, Environmental and Occupational Health ,Acid phosphatase ,General Medicine ,Mussel ,Carbon Dioxide ,Hydrogen-Ion Concentration ,Alkaline Phosphatase ,Catalase ,biology.organism_classification ,Pollution ,Oxygen ,Oxidative Stress ,chemistry ,Mytilus coruscus ,biology.protein ,Alkaline phosphatase - Abstract
Ocean acidification (OA) and hypoxic events are increasing worldwide problems, their interactive effects have not been well clarified, although their co-occurrence is prevalent. The East China Sea (the Yangtze River estuary area) suffers from not only coastal hypoxia but also pH fluctuation, representing an ideal study site to explore the combined effect of OA and hypoxia on marine bivalves. We experimentally evaluated the antioxidant response of the mussel Mytilus coruscus exposed to three pH levels (8.1, 7.7 and 7.3) at two dissolved oxygen (DO) levels (2.0mgL-1 and 6.0mgL-1) for 72h. Activities of superoxide dismutase, catalase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase and levels of malondialdehyde were measured in gills and hemolymph. All enzymatic activities in hemolymph and gills followed a similar pattern throughout the experiment duration. Generally, low DO showed greater effects on enzyme activities than elevated CO2. Significant interactions between DO, pH and time were only observed at superoxide dismutase and catalase in both tissues. PCA revealed positive relationships between most enzyme activities in both gills and hemolymph with the exception of alkaline phosphatase activity and the level of malondialdehyde in the hemolymph. Overall, our results suggested that decreased pH and low DO induced similar antioxidant responses in the hard shelled mussel, and showed an additive effect on most enzyme activities. The evaluation of multiple environmental stressors, a more realistic scenario than single ones, is crucial to predict the effect of future global changes on coastal species and our results supply some insights on the potential combined effects of reduced pH and DO on marine bivalves.
- Published
- 2017
- Full Text
- View/download PDF