Farina Windener, Odile Boespflug-Tanguy, Qiao Ling Cui, Sabah Mozafari, Benjamín Hernández-Rodríguez, Anne Baron-Van Evercooren, Christian Thomas, Tanja Kuhlmann, Hans R. Schöler, Jürgen Winkler, Yu Kang T. Xu, Martin Stehling, Linda Ottoboni, Gianvito Martino, Marc Ehrlich, Stefanie Albrecht, Konstantina Chanoumidou, Sergiy Velychko, Juan M. Vaquerizas, Jack P. Antel, Kee-Pyo Kim, University Hospital Münster - Universitaetsklinikum Muenster [Germany] (UKM), Max Planck Institute for Molecular Biomedicine, Max-Planck-Gesellschaft, Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), IRCCS Ospedale San Raffaele [Milan, Italy], Montreal Neurological Institute and Hospital, McGill University = Université McGill [Montréal, Canada], Johns Hopkins University (JHU), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Maladies neurodéveloppementales et neurovasculaires (NeuroDiderot (UMR_S_1141 / U1141)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), and HAL-SU, Gestionnaire
Summary Limited access to human oligodendrocytes impairs better understanding of oligodendrocyte pathology in myelin diseases. Here, we describe a method to robustly convert human fibroblasts directly into oligodendrocyte-like cells (dc-hiOLs), which allows evaluation of remyelination-promoting compounds and disease modeling. Ectopic expression of SOX10, OLIG2, and NKX6.2 in human fibroblasts results in rapid generation of O4+ cells, which further differentiate into MBP+ mature oligodendrocyte-like cells within 16 days. dc-hiOLs undergo chromatin remodeling to express oligodendrocyte markers, ensheath axons, and nanofibers in vitro, respond to promyelination compound treatment, and recapitulate in vitro oligodendroglial pathologies associated with Pelizaeus-Merzbacher leukodystrophy related to PLP1 mutations. Furthermore, DNA methylome analysis provides evidence that the CpG methylation pattern significantly differs between dc-hiOLs derived from fibroblasts of young and old donors, indicating the maintenance of the source cells’ “age.” In summary, dc-hiOLs represent a reproducible technology that could contribute to personalized medicine in the field of myelin diseases., Graphical abstract, Highlights • SOX10, OLIG2, and NKX6.2 directly convert human fibroblasts into dc-hiOLs in 16 days • dc-hiOLs express key oligodendrocyte markers • dc-hiOLs preserve the epigenetic age of donor cells • dc-hiOLs from PMD patients show maturation deficit and vulnerability to cell death, In this article, Kuhlmann and colleagues show that human fibroblasts can be directly converted into oligodendrocyte-like cells (dc-hiOLs) upon overexpression of SOX10, OLIG2, and NKX6.2. dc-hiOLs undergo chromatin remodeling to activate oligodendrocyte-related genes, perform ensheathment in vitro, and maintain the epigenetic age of donor cells. The applicability of dc-hiOLs in promyelination compound screening and disease-modeling studies is demonstrated.