1. The periodic axon membrane skeleton leads to Na nanodomains but does not impact action potentials
- Author
-
Zhaojie Chai, Anastasios V. Tzingounis, and George Lykotrafitis
- Subjects
Sodium ,Biophysics ,Action Potentials ,Spectrin ,Voltage-Gated Sodium Channels ,Actins ,Axons - Abstract
Recent work has established that axons have a periodic skeleton structure comprising of azimuthal actin rings connected via longitudinal spectrin tetramer filaments. This structure endows the axon with structural integrity and mechanical stability. Additionally, voltage-gated sodium channels follow the periodicity of the active-spectrin arrangement, spaced ∼190 nm segments apart. The impact of this periodic arrangement of sodium channels on the generation and propagation of action potentials is unknown. To address this question, we simulated an action potential using the Hodgkin-Huxley formalism in a cylindrical compartment, but instead of using a homogeneous distribution of voltage-gated sodium channels in the membrane, we applied the experimentally determined periodic arrangement. We found that the periodic distribution of voltage-gated sodium channels does not significantly affect the generation or propagation of action potentials but instead leads to large, localized sodium action currents caused by high-density sodium nanodomains. Additionally, our simulations show that the distance between periodic sodium channel strips could control axonal excitability, suggesting a previously underappreciated mechanism to regulate neuronal firing properties. Together, this work provides a critical new insight into the role of the periodic arrangement of sodium channels in axons, providing a foundation for future experimental studies.
- Published
- 2022