1. K-Ras-Activated Cells Can Develop into Lung Tumors When Runx3-Mediated Tumor Suppressor Pathways Are Abrogated.
- Author
-
You-Soub Lee, Ja-Yeol Lee, Soo-Hyun Song, Da-Mi Kim, Jung-Won Lee, Xin-Zi Chi, Yoshiaki Ito, and Suk-Chul Bae
- Abstract
K-RAS is frequently mutated in human lung adenocarcinomas (ADCs), and the p53 pathway plays a central role in cellular defense against oncogenic K-RAS mutation. However, in mouse lung cancer models, oncogenic K-Ras mutation alone can induce ADCs without p53 mutation, and loss of p53 does not have a significant impact on early K-Ras-induced lung tumorigenesis. These results raise the question of how K-Ras- activated cells evade oncogene surveillance mechanisms and develop into lung ADCs. RUNX3 plays a key role at the restriction (R)-point, which governs multiple tumor suppressor pathways including the p14ARF-p53 pathway. In this study, we found that K-Ras activation in a very limited number of cells, alone or in combination with p53 inactivation, failed to induce any pathologic lesions for up to 1 year. By contrast, when Runx3 was inactivated and K-Ras was activated by the same targeting method, lung ADCs and other tumors were rapidly induced. In a urethane-induced mouse lung tumor model that recapitulates the features of K-RAS-driven human lung tumors, Runx3 was inactivated in both adenomas (ADs) and ADCs, whereas K-Ras was activated only in ADCs. Together, these results demonstrate that the R-point- associated oncogene surveillance mechanism is abrogated by Runx3 inactivation in AD cells and these cells cannot defend against K-Ras activation, resulting in the transition from AD to ADC. Therefore, K-Ras-activated lung epithelial cells do not evade oncogene surveillance mechanisms; instead, they are selected if they occur in AD cells in which Runx3 has been inactivated. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF