1. Temporal abiotic variability structures invertebrate communities in agricultural drainage ditches.
- Author
-
Whatley, Merrin H., Vonk, J. Arie, van der Geest, Harm G., and Admiraal, Wim
- Subjects
ABIOTIC environment ,BIOLOGICAL variation ,INVERTEBRATE ecology ,DRAINAGE ,DITCHES ,AGRICULTURAL research - Abstract
Abiotic variability is known to structure lotic invertebrate communities, yet its influence on lentic invertebrates is not clear. This study tests the hypothesis that variability of nutrients and macro-ions are structuring invertebrate communities in agricultural drainage ditches. This was determined by investigating invertebrate adaptations to disturbance using insect life-history strategies. Many low-lying agricultural areas contain drainage ditches which potentially provide suitable habitat for aquatic invertebrates. In the province of North Holland (The Netherlands) the extensive network of eutrophic ditches are hydrologically managed, creating seasonal variability of water quality arising from agricultural run-off and the inlet of mineral rich, river derived water. This temporal variability was analysed from monitoring data, collected over a 7 month period (February till August) and covering 84 ditches in three soil regions; sand, clay and peat. Invertebrate diversity was determined as local ( α diversity), regional ( γ diversity) and species-turnover ( β diversity). We ran canonical correspondence analysis and linear mixed models to determine correlations between invertebrate diversity, functional community composition and specific abiotic parameters, including variability (expressed as the Median Absolute Deviation). Invertebrate α diversity was positively correlated to variability in water transparency and negatively correlated to average pH, with the two parameters reflecting a water quality gradient in the environment. Insect life-history strategies expressed adaptations to abiotic variability and harsh (eutrophic) conditions. These adaptations were mainly achieved through good dispersal abilities and developmental trade-offs. The results support measures to reduce influxes of excess nutrients to this network of ditches. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF