5 results on '"Norcini, M."'
Search Results
2. Satellite glia cells in dorsal root ganglia express functional NMDA receptors.
- Author
-
Castillo, C., Norcini, M., Martin Hernandez, L.A., Correa, G., Blanck, T.J.J., and Recio-Pinto, E.
- Subjects
- *
NEUROGLIA , *GANGLIA , *METHYL aspartate receptors , *GENE expression , *SENSORY neurons , *DINOPROSTONE - Abstract
Abstract: Satellite glia cells (SGCs), within the dorsal root ganglia (DRG), surround the somata of most sensory neurons. SGCs have been shown to interact with sensory neurons and appear to be involved in the processing of afferent information. We found that in rat DRG various N-methyl-d-aspartate receptor (NMDAr) subunits were expressed in SGCs in intact ganglia and in vitro. In culture, when SGCs were exposed to brief pulses of NMDA they evoked transient increases in cytoplasmic calcium that were inhibited by specific NMDA blockers (MK-801, AP5) while they were Mg2+ insensitive indicating that SGCs express functional NMDAr. The percentage of NMDA responsive SGCs was similar in mixed- (SGCs plus neurons) and SGC-enriched cultures. The pattern of the magnitude changes of the NMDA-evoked response was similar in SGCs and DRG neurons when they were in close proximity, suggesting that the NMDA response of SGCs and DRG neurons is modulated by their interactions. Treating the cultures with nerve growth factor, and/or prostaglandin E2 did not alter the percentage of SGCs that responded to NMDA. Since glutamate appears to be released within the DRG, the detection of functional NMDAr in SGCs suggests that their NMDAr activity could contribute to the interactions between neurons and SGCs. In summary we demonstrated for the first time that SGCs express functional NMDAr. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
3. The N-methyl-D-aspartate-evoked cytoplasmic calcium increase in adult rat dorsal root ganglion neuronal somata was potentiated by substance P pretreatment in a protein kinase C-dependent manner
- Author
-
Castillo, C., Norcini, M., Baquero-Buitrago, J., Levacic, D., Medina, R., Montoya-Gacharna, J.V., Blanck, T.J.J., Dubois, M., and Recio-Pinto, E.
- Subjects
- *
METHYL aspartate , *INTRACELLULAR calcium , *CYTOPLASM , *LABORATORY rats , *NEURONS , *PROTEIN kinase C , *SUBSTANCE P , *TACHYKININ antagonists - Abstract
Abstract: The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-d-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4–11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further contribute to the DRG sensitization by enhancing and prolonging the NMDA-evoked increase in [Ca2+]cyt in small- and medium-sized DRG neurons. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
4. An antidepressant behaviour in mice carrying a gene-specific InsP3R1, InsP3R2 and InsP3R3 protein knockdown
- Author
-
Galeotti, N., Vivoli, E., Norcini, M., Bartolini, A., and Ghelardini, C.
- Subjects
- *
ANTIDEPRESSANTS , *AFFECTIVE disorders , *PATHOLOGICAL physiology , *MICE as carriers of disease , *PHOSPHOINOSITIDES , *HEPARIN , *OLIGONUCLEOTIDES - Abstract
Abstract: Evidence has accumulated for the involvement of Ca2+ in the pathophysiology of mood disorders. Elevations in both resting and stimulated intracellular Ca2+ levels in patients with affective disorders have been reported. The role of inositol-1,4,5-trisphosphate receptors (InsP3Rs), which allow mobilization of intracellular Ca2+ stores, was, then, investigated in the mouse forced swimming test. InsP3R antagonists (heparin, xestospongin C) as well as an inositol monophosphatase inhibitor (LiCl) showed an antidepressant activity of intensity comparable to clinically used antidepressants. InsP3Rl, InsP3R2 and InsP3R3 knockdown mice were obtained to investigate the role of InsP3R isoforms. We generated mice carrying a cerebral knockdown of InsP3Rl, InsP3R2 and InsP3R3 proteins by administering antisense oligonucleotides complementary to the sequence of InsP3Rl, InsP3R2 and InsP3R3. These antisense-treated mice showed a specific InsP3R protein level reduction in the mouse cerebral cortex and hippocampus, demonstrated by immunoblotting, immunoprecipitation and immunocytochemistry experiments. Knockdown mice for each InsP3R isoforms showed an antidepressant behaviour and the induced phenotype was reversible disappearing 7 days after the end of the treatment. The absence of impairment of locomotor activity and spontaneous mobility in InsP3R knockdown mice was revealed. These results indicate the involvement of the InsP3R-mediated pathway in the modulation of depressive conditions and may be useful for the development of new therapeutical strategies for the treatment of mood disorders. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
5. Effects of a new potent analog of tocainide on hNav1.7 sodium channels and in vivo neuropathic pain models
- Author
-
Ghelardini, C., Desaphy, J.-F., Muraglia, M., Corbo, F., Matucci, R., Dipalma, A., Bertucci, C., Pistolozzi, M., Nesi, M., Norcini, M., Franchini, C., and Camerino, D. Conte
- Subjects
- *
NEUROLOGICAL disorders , *HYPERALGESIA , *MYOCARDIAL depressants , *SODIUM channels , *NEURAL transmission , *SERUM albumin , *OXALIPLATIN , *TARGETED drug delivery - Abstract
Abstract: The role of voltage-gated sodium channels in the transmission of neuropathic pain is well recognized. For instance, genetic evidence recently indicate that the human Nav1.7 sodium channel subtype plays a crucial role in the ability to perceive pain sensation and may represent an important target for analgesic/anti-hyperalgesic drugs. In this study a newly synthesized tocainide congener, named NeP1, was tested in vitro on recombinant hNav1.4 and hNav1.7 channels using patch-clamp technique and, in vivo, in two rat models of persistent neuropathic pain obtained either by chronic constriction injury of the sciatic nerve or by oxaliplatin treatment. NeP1 efficiently blocked hNav1.4 and hNav1.7 channels in a dose- and use-dependent manner, being by far more potent than tocainide. Importantly, the new compound displayed a remarkable use-dependent effect, which likely resulted from a very high affinity for inactivated compared to closed channels. In both models of neuropathic pain, NeP1 was greatly more potent than tocainide in reverting the reduction of pain threshold in vivo. In oxaliplatin-treated rats, NeP1 even produced greater and more durable anti-hyperalgesia than the reference drug tramadol. In addition, in vivo and in vitro studies suggest a better toxicological and pharmacokinetic profile for NeP1 compared to tocainide. Overall, these results indicate NeP1 as a new promising lead compound for further development in the treatment of chronic pain of neuropathic origin. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.