1. Differential expression of entactin-1/nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation.
- Author
-
Neu, Ricarda, Adams, Stephanie, and Munz, Barbara
- Subjects
MYOBLASTS ,CELL differentiation ,MUSCLE cells ,EXCITABLE membranes ,ANTINEOPLASTIC antibiotics ,CELLULAR control mechanisms ,ACTINOMYCIN - Abstract
Here, we show that entactin-2 expression is strongly, but transiently, induced in myogenic differentiation. Treatment of C2C12 myoblasts with actinomycin D in parallel to the induction of differentiation could demonstrate that this is due to enhanced transcription of the entactin-2 gene. Furthermore, treatment with the translation inhibitor cycloheximide could show that entactin-2 is a primary response gene. As p38 MAP kinase is an important regulator of myogenic differentiation, we also analyzed the possibility that entactin-2 might be a target of this pathway. However, using various p38 MAPK inhibitors, we could not detect involvement of p38 in entactin-2 up-regulation. Most remarkably, expression of the entactin-2 homolog entactin-1 dramatically declined in myogenesis, suggesting different functions of the two entactins in this process. A similar effect was seen in primary myoblasts isolated from two different mouse strains. Expression of high levels of entactin-1 in myoblasts using a retroviral expression system led to a higher proliferation rate both in growth and in differentiation medium and to reduced expression of various myogenic differentiation markers after the induction of differentiation. Furthermore, decreased expression of the entactin-2 gene after treatment of the cells with ent-2-specific siRNA preparation led to reduced expression of the cell cycle inhibitor p21. These data suggest important and distinct functions of entactin-1 and -2 in myogenic differentiation. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF