This paper proposes a new approach to iteratively calculate local air pollution exposure tolls in large-scale urban settings by taking the exposure times and locations of individuals into consideration. It explicitly avoids detailed air pollution concentration calculations and is therefore characterized by little data requirements, reasonable computation times for iterative calculations, and open-source compatibility. In a first step, the paper shows how to derive time-dependent vehicle-specific exposure tolls in an agent-based model. It closes the circle from the polluting entity, to the receiving entity, to damage costs, to tolls, and back to the behavioral change of the polluting entity. In a second step, the approach is applied to a large-scale real-world scenario of the Munich metropolitan area in Germany. Changes in emission levels, exposure costs, and user benefits are calculated. These figures are compared to a flat emission toll, and to a regulatory measure (a speed reduction in the inner city), respectively. The results indicate that the flat emission toll reduces overall emissions more significantly than the exposure toll, but its exposure cost reductions are rather small. For the exposure toll, overall emissions in crease for freight traffic which implies a potential conflict between pricing schemes to optimize local emission exposure and others to abate climate change. Regarding the mitigation of exposure costs caused by urban travelers, the regulatory measure is found to be an effective strategy, but it implies losses in user benefits. [ABSTRACT FROM AUTHOR]