1. Combination of pH-shifting, ultrasound, and heat treatments to enhance solubility and emulsifying stability of rice protein isolate.
- Author
-
Igartúa DE, Dichano MC, Ferrari SB, Palazolo GG, and Cabezas DM
- Abstract
Rice protein isolates (RPI) are promising plant-protein sources but present low solubility and poor surface activity in neutral conditions. Improving these characteristics is a crucial challenge to capitalize on them. This is the first work performing pH-shifting, ultrasound, and heat treatments on a commercial RPI. The combined approaches increased the protein solubility (from ∼2.7% to ∼91.8%) and surface hydrophobicity (up to ∼283%) and induced the formation of less compact and more dispersed protein aggregates. The pH-shifting induced the unfolding of protein molecules and aggregates making them available for modification by both ultrasound and heating, which are supposed to induce further protein unfolding, exposure of buried hydrophobic amino acid, and protein hydrolysis. Also, the combined approaches generated modified RPI able to form oil-in-water emulsions with reduced particle size and enhanced stability than the untreated RPI. Therefore, this work presents an effective combined approach to enhance the techno-functional properties of rice proteins., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF