1. Machine learning for high solid anaerobic digestion: Performance prediction and optimization.
- Author
-
Ganeshan P, Bose A, Lee J, Barathi S, and Rajendran K
- Subjects
- Anaerobiosis, Support Vector Machine, Algorithms, Bioreactors, Biofuels, Machine Learning
- Abstract
Biogas production through anaerobic digestion (AD) is one of the complex non-linear biological processes, wherein understanding its dynamics plays a crucial role towards process control and optimization. In this work, a machine learning based biogas predictive model was developed for high solid systems using algorithms, including SVM, ET, DT, GPR, and KNN and two different datasets (Dataset-1:10, Dataset-2:5 inputs). Support Vector Machine had the highest accuracy (R
2 ) of all the algorithms at 91 % (Dataset-1) and 87 % (Dataset-2), respectively. The statistical analysis showed that there was no significant difference (p = 0.377) across the datasets, wherein with less inputs, accurate results could be predicted. In case of biogas yield, the critical factors which affect the model predictions include loading rate and retention time. The developed high solid machine learning model shows the possibility of integrating Artificial Intelligence to optimize and control AD process, thus contributing to a generic model for enhancing the overall performance of the biogas plant., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Karthik Rajendran reports financial support was provided by SRM University AP - Amaravati. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF