1. Impacts of garbage classification and disposal on the occurrence of pharmaceutical and personal care products in municipal solid waste leachates: A case study in Shanghai.
- Author
-
Zhang J, Yu X, Wang J, Sui Q, and Zhao W
- Subjects
- Solid Waste, Food, China, Anti-Bacterial Agents, Pharmaceutical Preparations, Waste Disposal Facilities, Refuse Disposal methods, Water Pollutants, Chemical analysis, Cosmetics
- Abstract
Leachate generated during the treatment and disposal of municipal solid wastes (MSWs) can be an important source of pharmaceutical and personal care products (PPCPs) in the environment. With the implementation of garbage classification policy in China, the disposal methods of MSWs have changed, while its impacts on the occurrence of PPCPs in the generated leachate remain unknown. In this study, we investigated 49 target PPCPs in the leachates of classified MSWs, i.e. residual waste leachate (RWL) and food waste leachate (FWL), and revealed the influence of garbage classification implementation on the occurrence of PPCPs in leachates to be treated. The results showed the concentration and mass load of target PPCPs in the RWL samples (median values: 34.9 ng/L and 52.3 mg/d, respectively) were significantly higher than those in the FWL samples (median values: 19.3 ng/L and 14.5 mg/d, respectively). Macrolide (ML) antibiotics were the predominant PPCPs in the RWL samples, while in the FWL samples, quinolone (QL) antibiotics exhibited the highest concentration and mass load. The implementation of garbage classification policy led to the reduction of PPCP mass load (from 739 g/d to 262 g/d) in leachates to be treated. The findings are helpful for better designing or managing MSW treatment and disposal processes to minimize the emission of PPCPs from MSW leachates., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF