1. Prediction of adsorption performance of ZIF-67 for malachite green based on artificial neural network using L-BFGS algorithm.
- Author
-
Wang X, Liu S, Chen S, He X, Duan W, Wang S, Zhao J, Zhang L, Chen Q, and Xiong C
- Abstract
Given the necessity and urgency in removing organic pollutants such as malachite green (MG) from the environment, it is vital to screen high-capacity adsorbents using artificial neural network (ANN) methods quickly and accurately. In this study, a series of ZIF-67 were synthesized, which adsorption properties for organic pollutants, especially MG, were systematically evaluated and determined as 241.720 mg g
-1 (25 ℃, 2 h). The adsorption process was more consistent with pseudo-second-order kinetics and Langmuir adsorption isotherm, which correlation coefficients were 0.995 and 0.997, respectively. The chemisorption mechanism was considered to be π-π stacking interaction between imidazole and aromatic ring. Then, a Python-based neural network model using the Limited-memory BFGS algorithm was constructed by collecting the crucial structural parameters of ZIF-67 and the experimental data of batch adsorption. The model, optimized extensively, outperformed similar Matlab-based ANN with a coefficient of determination of 0.9882 and mean square error of 0.0009 in predicting ZIF-67 adsorption of MG. Furthermore, the model demonstrated a good generalization ability in the predictive training of other organic pollutants. In brief, ANN was successfully separated from the Matlab platform, providing a robust framework for high-precision prediction of organic pollutants and guiding the synthesis of adsorbents., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF