1. Ceramide-induced cleavage of GPR64 intracellular domain drives Ewing sarcoma
- Author
-
Kruthi Suvarna, Panneerselvam Jayabal, Xiuye Ma, Hu Wang, Yidong Chen, Susan T. Weintraub, Xianlin Han, Peter J. Houghton, and Yuzuru Shiio
- Subjects
CP: Cancer ,CP: Metabolism ,Biology (General) ,QH301-705.5 - Abstract
Summary: Ewing sarcoma is a cancer of bone and soft tissue in children and young adults primarily driven by the EWS-FLI1 fusion oncoprotein, which has been undruggable. Here, we report that Ewing sarcoma depends on secreted sphingomyelin phosphodiesterase 1 (SMPD1), a ceramide-generating enzyme, and ceramide. We find that G-protein-coupled receptor 64 (GPR64)/adhesion G-protein-coupled receptor G2 (ADGRG2) responds to ceramide and mediates critical growth signaling in Ewing sarcoma. We show that ceramide induces the cleavage of the C-terminal intracellular domain of GPR64, which translocates to the nucleus and restrains the protein levels of RIF1 in a manner dependent on SPOP, a substrate adaptor of the Cullin3-RING E3 ubiquitin ligase. We demonstrate that both SMPD1 and GPR64 are transcriptional targets of EWS-FLI1, indicating that SMPD1 and GPR64 are EWS-FLI1-induced cytokine-receptor dependencies. These results reveal the SMPD1-ceramide-GPR64 pathway, which drives Ewing sarcoma growth and is amenable to therapeutic intervention.
- Published
- 2024
- Full Text
- View/download PDF