11 results on '"Xiangliang Zhang"'
Search Results
2. Retraction Notice to: The Potential Therapeutic Role of Exosomal MicroRNA-520b Derived from Normal Fibroblasts in Pancreatic Cancer
- Author
-
Huijuan Shi, Hui Li, Tiantian Zhen, Yu Dong, Xiaojuan Pei, and Xiangliang Zhang
- Subjects
Therapeutics. Pharmacology ,RM1-950 - Published
- 2022
- Full Text
- View/download PDF
3. The Potential Therapeutic Role of Exosomal MicroRNA-520b Derived from Normal Fibroblasts in Pancreatic Cancer
- Author
-
Huijuan Shi, Hui Li, Tiantian Zhen, Yu Dong, Xiaojuan Pei, and Xiangliang Zhang
- Subjects
exosomes ,microRNA-520b ,fibroblasts ,pancreatic cancer ,ZNF367 ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Pancreatic cancer (PC) remains a major health concern, with conventional cancer treatments exerting little influence on the disease course. MicroRNA-520b (miR-520b) functions as a tumor suppressor in several types of human cancers, whereas its anti-tumor property in the context of PC is still fundamental. The aim of this study is to identify the potential therapeutic role of miR-520b, transferred by exosomes, derived from normal fibroblasts (NFs) in PC progression. A gain-of-function study was performed to examine the roles of miR-520b in PC cell line SW1990, which suggested that miR-520b served as a tumor suppressor in PC. In order to confirm the role of exosomal miR-520b, exosomes were isolated from NF culture medium and cocultured with SW1990 cells. During the coculture experiments, we disrupted exosome secretion and upregulated exosomal miR-520b. The in vitro coculture studies revealed that miR-520b was transferred from NF-derived exosomes to PC cells and thereby suppressed PC cell proliferation, invasion, migration, and stimulated apoptosis. Furthermore, inhibited tumor growth and live metastasis upon elevated miR-520b in exosomes were observed in vivo. Conjointly, our study demonstrates that NF-derived exosomal miR-520b impedes the progression of PC, which contributes to a novel, therapeutic role of exosomal miR-520b for treating PC.
- Published
- 2020
- Full Text
- View/download PDF
4. hsa_circ_001653 Implicates in the Development of Pancreatic Ductal Adenocarcinoma by Regulating MicroRNA-377-Mediated HOXC6 Axis
- Author
-
Huijuan Shi, Hui Li, Tiantian Zhen, Yu Dong, Xiaojuan Pei, and Xiangliang Zhang
- Subjects
pancreatic ductal adenocarcinoma ,circular RNA ,hsa_circ_001653 ,microRNA-377 ,HOXC6 ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive pancreatic cancer with poor survival rate. Circular RNAs (circRNAs) signatures have been identified in some human cancers, but there are little data concerning their presence in PDAC. We investigated the role of hsa_circ_001653, a newly identified circRNA, in the development of PDAC. hsa-circ-001653 expression was measured in 83 paired normal and tumor tissues surgically resected from PDAC patients. Phenotypic changes of PDAC cells were evaluated by assays for cell viability, cell cycle, invasion, and apoptosis. Tube-like structure formation of human umbilical vein endothelial cells (HUVECs) was examined in the presence of PDAC cells. Cross-talk between hsa_circ_001653 and microRNA-377 (miR-377)/human homeobox C6 (HOXC6) was assessed using dual-luciferase reporter assay, Ago2 immunoprecipitation, and northern blot analysis. Nude mice were inoculated with human PDAC cells for in vivo analysis. hsa_circ_001653 was an upregulated circRNA in PDAC. Silencing of hsa_circ_001653 in PDAC cells via RNA interference inhibited cell viability, cell-cycle progression, in vitro angiogenesis, and invasive properties, showing a pro-apoptotic effect. hsa_circ_001653 was found to bind to miR-377, which in turn repressed HOXC6 expression. Inhibition of miR-377 by its specific inhibitor restored cell viability, cell-cycle progression, in vitro angiogenesis, and invasive properties in PDAC cells lacking endogenous hsa_circ_001653. When nude mice were inoculated with human PDAC cells, inhibition of hsa_circ_001653 had a therapeutic effect. Collectively, the present study provides an enhanced understanding of hsa_circ_001653 as a therapeutic target for PDAC.
- Published
- 2020
- Full Text
- View/download PDF
5. Anthropogenic litter density and composition data acquired flying commercial drones on sandy beaches along the Saudi Arabian Red Sea
- Author
-
Cecilia Martin, Qiannan Zhang, Dongjun Zhai, Xiangliang Zhang, and Carlos M. Duarte
- Subjects
Drone images ,Dji phantom ,Faster R-CNN ,Marine litter ,Anthropogenic marine debris ,Plastic ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Science (General) ,Q1-390 - Abstract
Anthropogenic litter density and composition data were obtained by conducting aerial surveys on 44 beaches along the Saudi Arabian Coast of the Red Sea [1]. The aerial surveys were completed with commercial drones of the DJI Phantom suite flown at a 10 m altitude. The stills have a resolution of less than 0.5 cm pixels−1, hence, litter objects of few centimetres like bottle caps are easily detectable in the drone images. We here provide a subsample of the drone images acquired. To spare the time needed to visually count the litter objects in the thousands of drone images acquired, these were automatically screened using an object detection algorithm, specifically a Faster R-CNN, able to perform a binary classification in litter and non-litter and to categorize the objects in classes. The multi-class classification, however, is a challenging problem and, hence, it was conducted only on the 15 beaches that showed the highest performance after the binary classification. The performance of the algorithm was calculated by visually screening a subsample of images and it was used to correct the output of the Faster R-CNN. The described steps allowed to obtain an estimate of the litter density in 44 beaches and the litter composition in 15 beaches. By multiplying the relative abundance of each litter class and the median weight of objects belonging to each class, we obtained an estimate of the total mass of plastic beached on 15 beaches. Possible predictors of litter density and mass are the population and marine traffic densities at the site, the exposure of the beach to the prevailing wind and the wind speed, the fetch length and the presence of vegetation where litter could get trapped. Making such raw data (i.e. litter density and composition and their predictors) available can help building the base for a robust global estimate of anthropogenic litter in coastal environments and it is particularly important if data regards an understudied region like the Arabian Peninsula. Moreover, we share a subsample of the original drone images to allow usage from stakeholders.
- Published
- 2021
- Full Text
- View/download PDF
6. Effect of high-voltage thermal breakdown on pore characteristics of coal
- Author
-
Chuanjie Zhu, Ximiao Lu, Zishan Gao, Fazhi Yan, Chang Guo, and Xiangliang Zhang
- Subjects
Mining engineering. Metallurgy ,TN1-997 - Abstract
High-voltage thermal breakdown has great potential application in permeability enhancement of coal seam. The characteristics of the breakdown channel, coal element, porosity and microscopic coal petrography of coal under high-voltage electric load were experimentally studied. The coal interior left apparent tracks due to electric current burning with high temperature. The percentage of C, O, Al, Fe, and Si had slightly decreased, while the content of element N increased obviously. Low-pressure nitrogen gas adsorption (LP-N2GA) and mercury intrusion analysis showed that coal porosity increased. The increases of micropores and mesopores are beneficial to promotion of the ability of gas storage, and the increase of macropores could enhance the gas seepage and migration. The results of scanning electron microscope (SEM) show that there are many exogenous fractures in coal, which is also beneficial to gas seepage and migration. The results lay a theoretical foundation for application of high-voltage thermal breakdown in coal mines. Keywords: High-voltage thermal breakdown, Permeability enhancement, Porosity, Fracture, Gas adsorption
- Published
- 2017
- Full Text
- View/download PDF
7. Blocking the IGF2BP1-promoted glucose metabolism of colon cancer cells via direct de-stabilizing mRNA of the LDHA enhances anticancer effects
- Author
-
Xiangliang Zhang, Gaojie Liu, Yanlin Feng, Jinxin Feng, and Kejun Li
- Subjects
0301 basic medicine ,Untranslated region ,Colorectal cancer ,RNA-binding protein ,glucose metabolism ,mild HT ,Carbohydrate metabolism ,03 medical and health sciences ,0302 clinical medicine ,Downregulation and upregulation ,Drug Discovery ,medicine ,Messenger RNA ,IGF2BP1 ,Chemistry ,lcsh:RM1-950 ,Cancer ,medicine.disease ,Warburg effect ,030104 developmental biology ,lcsh:Therapeutics. Pharmacology ,030220 oncology & carcinogenesis ,Cancer research ,LHDA ,Molecular Medicine ,Original Article - Abstract
Colorectal cancer (CRC) is a commonly diagnosed cancer with poor prognosis and high mortality rate. Hyperthermia (HT) is an adjunctive therapy to enhance the antitumor effects of traditional chemo- or radio- therapy. Here, we report that a cluster of essential regulator genes and speed-limit enzymes of glucose metabolism were significantly elevated under HT from a glucose metabolism PCR array analysis. Under low glucose supply or glucose metabolism inhibition, CRC cells displayed increased sensitivity to HT treatments. By transcript sequencing from the established HT resistant (HTR) colon cancer cell line LoVo HTR, we observed that IGF2BP1, an RNA-binding protein, was significantly upregulated in HTR cells compared with parental cells. Furthermore, LDHA mRNA was identified as an IGF2BP1 direct target. An RNA immunoprecipitation assay and RNA pull-down assay consistently illustrated IGF2BP1 specifically bonds to the 3′ UTR of LDHA mRNA, leading to enhanced stability of LDHA mRNA. Finally, we demonstrated that inhibiting the IGF2BP1-promoted glycolysis sensitized colon cancer cells to HT treatment via both in vitro and in vivo experiments. Our findings suggest that targeting the IGF2BP1-LDHA-glycolysis pathway might be a promising therapeutic approach to enhance the anti-cancer effects of HT treatment., Graphical Abstract, Glucose metabolism and IGF2BP1 are upregulated under HT treatment by RNA-seq analysis. IGF2BP1 promotes glucose metabolism of CRC cells via stabilization of LDHA expression by specific binding to 3′ UTR of LDHA mRNA. In vitro and in vivo experiments demonstrated inhibiting the IGF2BP1-promoted glycolysis sensitized colon cancer cells to HT.
- Published
- 2021
8. The Potential Therapeutic Role of Exosomal MicroRNA-520b Derived from Normal Fibroblasts in Pancreatic Cancer
- Author
-
Tiantian Zhen, Huijuan Shi, Hui Li, Xiaojuan Pei, Xiangliang Zhang, and Yu Dong
- Subjects
0301 basic medicine ,pancreatic cancer ,Context (language use) ,microRNA-520b ,exosomes ,Exosome ,Article ,Metastasis ,03 medical and health sciences ,0302 clinical medicine ,Pancreatic cancer ,fibroblasts ,Drug Discovery ,microRNA ,medicine ,Chemistry ,Cell growth ,lcsh:RM1-950 ,medicine.disease ,Microvesicles ,030104 developmental biology ,lcsh:Therapeutics. Pharmacology ,Cell culture ,030220 oncology & carcinogenesis ,Cancer research ,Molecular Medicine ,ZNF367 - Abstract
Pancreatic cancer (PC) remains a major health concern, with conventional cancer treatments exerting little influence on the disease course. MicroRNA-520b (miR-520b) functions as a tumor suppressor in several types of human cancers, whereas its anti-tumor property in the context of PC is still fundamental. The aim of this study is to identify the potential therapeutic role of miR-520b, transferred by exosomes, derived from normal fibroblasts (NFs) in PC progression. A gain-of-function study was performed to examine the roles of miR-520b in PC cell line SW1990, which suggested that miR-520b served as a tumor suppressor in PC. In order to confirm the role of exosomal miR-520b, exosomes were isolated from NF culture medium and cocultured with SW1990 cells. During the coculture experiments, we disrupted exosome secretion and upregulated exosomal miR-520b. The in vitro coculture studies revealed that miR-520b was transferred from NF-derived exosomes to PC cells and thereby suppressed PC cell proliferation, invasion, migration, and stimulated apoptosis. Furthermore, inhibited tumor growth and live metastasis upon elevated miR-520b in exosomes were observed in vivo. Conjointly, our study demonstrates that NF-derived exosomal miR-520b impedes the progression of PC, which contributes to a novel, therapeutic role of exosomal miR-520b for treating PC.
- Published
- 2020
9. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment
- Author
-
Francesca Cagnacci, Anastasios Bounas, Víctor Vázquez, Volen Arkumarev, Margarita Roa, Christopher J. Henderson, Neil Hammerschlag, Marc J. S. Hensel, Ian MacGregor-Fors, Catherine Hobaiter, Elijah Panipakoochoo, Gonzalo Mucientes, Million Tesfaye, Camilo E. Sánchez-Sarria, Dallas D'Silva, Grant Garner, Cloé Pourchier, Erin E. Posthumus, Zuania Colón-Piñeiro, Theresa M. Crimmins, Charlie Huveneers, Victor China, William D. Halliday, Avi Bar-Massada, Breyl X. K. Ng, Jennifer D. Reilly, Brendan J. Godley, Thibaud Gruber, Natalia Ocampo-Peñuela, Mitchell J. Rider, Lori Anne Barnett, Vladimir Dobrev, Nicholas D. Higgs, Christopher J. Patrick, Angélica Hernández-Palma, Kenneth B.H. Er, Rebecca A. Hutchinson, Harel Baz, Pia Anderwald, Marc Shellard, Camilo M. Botero, Sang Don Lee, Megan E. Hanna, Christopher D. Stallings, Yehezkel Buba, Pamela Carzon, Aroha Miller, David R. Barclay, Steffen Oppel, Juan Sebastian Ulloa, Víctor M. Eguíluz, Justin R. Perrault, Thomas A. Schlacher, Lisandro Benedetti-Cecchi, Victoria Saravia-Mullin, Nuno Queiroz, Fabio Bulleri, Zehava Sigal, Robert J. Orth, Jonas Hentati-Sundberg, Tomas J. Bird, Ron Chen, Jarod Lyon, Mengistu Wondafrash, Laurent Chauvaud, Gabriel Barros Gonçalves de Souza, Sarah J. L. Severino, Clive R. McMahon, Christian Requena-Mesa, Eulogio H. Soto, Amir Ayali, Jesse S. Lewis, Mark J. Costello, Miguel A. Furtado, Jessica P. Diaz-Orozco, Eleanor A. Weideman, Kyle Maclean, Frédéric LeTourneux, Lorenzo Sileci, Clementine Seguine, Sarah Abarro, Mackenzie B. Woods, David March, Qiang Yang, Katja Baerenfaller, Catherine M. Foley, Sharon Davidzon, David W. Sims, Ku'ulei S. Rodgers, Cheryl A. Frederick, Andrew G. Jeffs, Ohad Hatzofe, Yigael Ben Ari, Shmulik Yedvab, Cyril Piou, Gregory D. LeClair, Juan C. Franco Morales, Matthew G. Henderson, Cristian A. Cruz-Rodríguez, Ron Efrat, Tabi Karkom, Thomas A. Okey, Tudor Racoviceanu, Enrico Lunghi, Alazar Ruffo, Mohlamatsane M. Mokhatla, Ofer Yaakov, Stephanie M. Martin, Dobromir Dobrev, Matthew K. Pine, Dinusha R.M. Jayathilake, Antonia T. Cooper, Andrea Corradini, Eva Cacabelos, Yunior R. Velázquez, Amber Dearden, Iacopo Bertocci, Tal Gavriel, Sarah E. Hirsch, Elzbieta Kret, Meaghan E. Faletti, Matthew W. H. Chatfield, Lucy C. Woodall, Mary E. Clinton, Gal Badihi, Ilia Baskin, Carina Terry, Christopher G. Lowe, Joseph S. Curtis, Brandy S. Biggar, Nicole Esteban, Ellen G. Denny, Margot L. Hessing-Lewis, David Elustondo, Jeffrey Haight, Donna Gibbs, Robert L. Thomson, Maxim Larrivée, Matthew D. Adams, Camrin D. Braun, Mark G. Meekan, Brendan Connors, Avi Berkovitch, Jessica Schultz, Sigal Balshine, Lauren McWhinnie, Hanspeter Loetscher, Vicent Calatayud, Simon R. Thorrold, Christian Rutz, Nataliya A. Milchakova, Martin K.S. Smith, Stephanie K. Archer, Richard K. Dewey, Raoul Manenti, Kristina Boerder, Alon Penn, Ogen Licht, Susana Rodríguez-Buriticá, Zhu Liu, Rotem Sade, Michael B. Schrimpf, Nicola Koper, Rick D. Stuart-Smith, Austin J. Gallagher, Clayton T. Lamb, Reilly Rodriguez, Luca Pedrotti, Arjun Amar, Amanda E. Bates, Solomon Mengistu, Thierry Grandmont, Guojun He, Oliver N. Shipley, Sara N. Schaffer, Jorge P. Rodríguez, Cecilia Martin, Robin Hale, Simon A. Morley, Eyal Miller, Catherine Alexandra Gagnon, Sarah E. Dudas, Hyomin Park, Sally Hofmeyr, Paulson G. Des Brisay, Matthias-Claudio Loretto, Assaf Zvuloni, Elena Maggi, Jasmine A. Ballantyne, Susan J. Cunningham, Malcolm C.K. Soh, Elizabeth M. P. Madin, Sonja Wipf, David S. Hik, Stoyan C. Nikolov, Cameron J. Baker, Ben L. Gilby, Felipe A. Estela, Chiara Ravaglioli, Christophe Guinet, Alyssa Rosemartin, Lauren Dares, Gilles Gauthier, Michelle García-Arroyo, Luca Rindi, Oded Berger-Tal, Brendan D. Shea, Lucy Zipf, Michael S. Diamond, Shengjie Lai, Giann K. Aguirre-Samboní, Jennifer M. Jackson, Peter G. Ryan, Emily J. Southall, Kyle D. Kittelberger, Fabio C. De Leo, Jonathan Belmaker, Olof Olsson, Steven J. Cooke, Yuhang Pan, Rylan J. Command, Vincent Z. Kuuire, Kevin Wong, Reut Vardi, Xiangliang Zhang, Cristian Mihai Adamescu, Craig A. Radford, Enrique Arbeláez-Cortés, Andrew Graham, Joël Bêty, Charles Palmer, Yuval Zukerman, Miyako H. Warrington, Michael J. Schram, Amit Dolev, Orlando Acevedo-Charry, Claudio A. Quesada-Rodriguez, Kara R. Wall, Nikita Sergeenko, Celene B. Milanes, Jaein Choi, Paula Moraga, Jeff Switzer, Yenifer Herrera-Varón, Jonathan D. Midwood, Manor Gury, Amanda Weltman, Emiliano Mori, Thomas M. Clarke, Mai Lazarus, Jeffrey R. Parmelee, Petra Sumasgutner, Patrick T. Rex, Ziv Birman, Rodrigo Solis, Jennifer Chapman, Alejandro Bernal-Ibáñez, Vinay Udyawer, Itai Namir, David Ocampo, Justin A. Del Bel Belluz, Egide Kalisa, Reny P. Devassy, Pierre Legagneux, Jorge Ramírez-González, Jessleena Suri, Shelby R. Hoover, Michelle E. Taylor, Carlos M. Duarte, Ana F. L. Sobral, Graham J. Edgar, Francesc Peters, Philina A. English, Francis Juanes, Lisa C. Lacko, Marta Coll, Gentile Francesco Ficetola, Nicolas Moity, Emily Weigel, Nathan R. Geraldi, Jill L. Brooks, Philippe Archambault, Nicholas A. W. Brown, Julia Wakeling, Tanya Otero, Matt Rothendler, Shira Salingré, Laura Borden, Richard B. Primack, Veronica Nanni, Miqkayla Stofberg, Guy Lavian, Jacob W. Brownscombe, Samuel Bakari, Jonathan A. Peake, Andrew D. Olds, Paris V. Stefanoudis, Patricia S. Albano, Alexandre Alonso-Fernández, Seth G. Cherry, Juan Fernández-Gracia, Çağan H. Şekercioğlu, Shahar Malamud, Eric Clua, Jeannette Bedard, Dugald Thomson, Josip Kusak, Uri Roll, Louise Wilson, Craig E. Franklin, Roanna Y. T. Pang, Jose Manuel Ochoa-Quintero, Lina María Sánchez-Clavijo, Julien Bonnel, Sorin Cheval, Christine M. Boston, Mark A. Hindell, R. L. Marsh, Ruthy Yahel, Samuel Wiesmann, Frédéric Dulude de-Broin, Adrian H.B. Loo, Ross G. Dwyer, Takahiro Shimada, M. Ortega, Laura P. Kroesen, Ignacio Gestoso, Bibiana Gómez-Valencia, Valeria Vergara, Takanao Tanaka, Fiona Francis, Benjamin P. Y.-H. Lee, Delphine Mathias, Steven Mihaly, Kathleen L. Prudic, Alessia Scuderi, Dana Haggarty, Kent P. McFarland, Katharine L. Gerst, Paul B. Day, Vikram Aditya, Graeme C. Hays, Cerren Richards, Jeffrey A. Seminoff, Robert Harcourt, Matthew P. Stefanak, European Commission, Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), Department of Ocean Sciences [Newfoudland, Canada] (Memorial University of Newfoundland), Memorial University of Newfoundland (Memorial University of Newfoundland)-Department of Biology, Memorial University of Newfoundland, Gordon and Betty Moore Foundation, National Geographic Society, University of St Andrews. School of Biology, University of St Andrews. Centre for Biological Diversity, University of St Andrews. Centre for Social Learning & Cognitive Evolution, and Group, PAN-Environment Working
- Subjects
0106 biological sciences ,QH301 Biology ,Politique sanitaire ,Biodiversity ,GF Human ecology. Anthropogeography ,01 natural sciences ,3rd-NDAS ,Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoogeografi: 486 [VDP] ,RA0421 ,RA0421 Public health. Hygiene. Preventive Medicine ,Pandemic ,Enforcement ,GE ,pandémie ,évaluation de l'impact social ,COVID-19 ,lockdown ,human activity ,wildlife ,environmental treats ,GF ,Global monitoring ,S50 - Santé humaine ,Nature Conservation ,Restoration ,[SDE]Environmental Sciences ,Conservation de la nature ,P01 - Conservation de la nature et ressources foncières ,Samfunnsvitenskap: 200::Samfunnsgeografi: 290 [VDP] ,GE Environmental Sciences ,Coronavirus disease 2019 (COVID-19) ,Wildlife ,010603 evolutionary biology ,Surveillance de l’environnement ,Article ,QH301 ,Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Etologi: 485 [VDP] ,Dual role ,SDG 3 - Good Health and Well-being ,Settore BIO/07 - ECOLOGIA ,Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Økologi: 488 [VDP] ,14. Life underwater ,Environmental planning ,Ecology, Evolution, Behavior and Systematics ,Nature and Landscape Conservation ,Custodians ,010604 marine biology & hydrobiology ,Impact sur l'environnement ,Évaluation de l'impact ,15. Life on land ,Protection de l'environnement ,13. Climate action ,Business ,Gestion de l'environnement - Abstract
18 pages, 5 figures, supplementary data https://doi.org/10.1016/j.biocon.2021.109175.-- The data supporting the findings of this study are available in the Supplementary Materials (Appendix 3–5, Table A3-A5). Raw datasets (where available) and results summary tables for each analysis of human mobility and empirical datasets are deposited in a github repository: https://github.com/rjcommand/PAN-Environment, The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness, The Canada Research Chairs program provided funding for the core writing team. Field research funding was provided by A.G. Leventis Foundation; Agence Nationale de la Recherche, [grant number ANR-18-32–0010CE-01 (JCJC PEPPER)]; Agencia Estatal de Investigaci; Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), [grant number M1420-09-5369-FSE-000002]; Alan Peterson; ArcticNet; Arkadaşlar; Army Corp of Engineers; Artificial Reef Program; Australia's Integrated Marine Observing System (IMOS), National Collaborative; Research Infrastructure Strategy (NCRIS), University of Tasmania; Australian Institute of Marine Science; Australian Research Council, [grant number LP140100222]; Bai Xian Asia Institute; Batubay Özkan; BC Hydro Fish and Wildlife Compensation Program; Ben-Gurion University of the Negev; Bertarelli Foundation; Bertarelli Programme in Marine Science; Bilge Bahar; Bill and Melinda Gates Foundation; Biology Society of South Australia; Boston University; Burak Över; California State Assembly member Patrick O'Donnell; California State University Council on Ocean Affairs, Science & Technology; California State University Long Beach; Canada Foundation for Innovation (Major Science Initiative Fund and funding to Oceans Network Canada), [grant number MSI 30199 for ONC]; Cape Eleuthera Foundation; Centre National d'Etudes Spatiales; Centre National de la Recherche Scientifique; Charles Darwin Foundation, [grant number 2398]; Colombian Institute for the Development of Science and Technology (COLCIENCIAS), [grant number 811–2018]; Colombian Ministry of Environment and Sustainable Development, [grant number 0041–2020]; Columbia Basin Trust; Commission for Environmental Cooperation; Cornell Lab of Ornithology; Cultural practices and environmental certification of beaches, Universidad de la Costa, Colombia, [grant number INV.1106–01–002-15, 2020–21]; Department of Conservation New Zealand; Direction de l'Environnement de Polynésie Française; Disney Conservation Fund; DSI-NRF Centre of; Excellence at the FitzPatrick Institute of African Ornithology; Ecology Project International; Emin Özgür; Environment and Climate Change Canada; European Community: RTD programme - Species Support to Policies; European Community's Seventh Framework Programme; European Union; European Union's Horizon 2020 research and innovation programme, Marie Skłodowska-Curie, [grant number 798091, 794938]; Faruk Eczacıbaşı; Faruk Yalçın Zoo; Field research funding was provided by King Abdullah University of Science and Technology; Fish and Wildlife Compensation Program; Fisheries and Oceans Canada; Florida Fish and Wildlife Conservation Commission, [grant numbers FWC-12164, FWC-14026, FWC-19050]; Fondo Europeo de Desarrollo Regional; Fonds québécois de la recherche nature et technologies; Foundation Segré; Fundação para a Ciência e a Tecnologia (FCT Portugal); Galapagos National Park Directorate research, [grant number PC-41-20]; Gordon and Betty Moore Foundation, [grant number GBMF9881 and GBMF 8072]; Government of Tristan da Cunha; Habitat; Conservation Trust Foundation; Holsworth Wildlife Research Endowment; Institute of Biology of the Southern Seas, Sevastopol, Russia; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; Instituto Nacional de Pesquisas Espaciais (INPE), Brazil; Israeli Academy of Science's Adams Fellowship; King Family Trust; Labex, CORAIL, France; Liber Ero Fellowship; LIFE (European Union), [grant number LIFE16 NAT/BG/000874]; María de Maeztu Program for Units of Excellence in R&D; Ministry of Science and Innovation, FEDER, SPASIMM,; Spain, [grant number FIS2016–80067-P (AEI/FEDER, UE)]; MOE-Korea, [grant number 2020002990006]; Mohamed bin Zayed Species Conservation Fund; Montreal Space for Life; National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Program; National Geographic Society, [grant numbers NGS-82515R-20]; National Natural Science Fund of China; National Oceanic and Atmospheric Administration; National Parks Board, Singapore; National Science and Technology Major Project of China; National Science Foundation, [grant number DEB-1832016]; Natural Environment Research Council of the UK; Natural Sciences and Engineering Research Council of Canada (NSERC), Alliance COVID-19 grant program, [grant numbers ALLRP 550721–20, RGPIN-2014-06229 (year: 2014), RGPIN-2016-05772 (year: 2016)]; Neiser Foundation; Nekton Foundation; Network of Centre of Excellence of Canada: ArcticNet; North Family Foundation; Ocean Tracking Network; Ömer Külahçıoğlu; Oregon State University; Parks Canada Agency (Lake Louise, Yoho, and Kootenay Field Unit); Pew Charitable Trusts; Porsim Kanaf partnership; President's International Fellowship Initiative for postdoctoral researchers Chinese Academy of Sciences, [grant number 2019 PB0143]; Red Sea Research Center; Regional Government of the Azores, [grant number M3.1a/F/025/2015]; Regione Toscana; Rotary Club of Rhinebeck; Save our Seas Foundation; Science & Technology (CSU COAST); Science City Davos, Naturforschende Gesellschaft Davos; Seha İşmen; Sentinelle Nord program from the Canada First Research Excellence Fund; Servizio Foreste e Fauna (Provincia Autonoma di Trento); Sigrid Rausing Trust; Simon Fraser University; Sitka Foundation; Sivil Toplum Geliştirme Merkezi Derneği; South African National Parks (SANParks); South Australian Department for Environment and Water; Southern California Tuna Club (SCTC); Spanish Ministry for the Ecological Transition and the Demographic Challenge; Spanish Ministry of Economy and Competitiveness; Spanish Ministry of Science and Innovation; State of California; Sternlicht Family Foundation; Suna Reyent; Sunshine Coast Regional Council; Tarea Vida, CEMZOC, Universidad de Oriente, Cuba, [grant number 10523, 2020]; Teck Coal; The Hamilton Waterfront Trust; The Ian Potter Foundation, Coastwest, Western Australian State NRM; The Red Sea Development Company; The Wanderlust Fund; The Whitley Fund; Trans-Anatolian Natural Gas Pipeline; Tula Foundation (Hakai Institute); University of Arizona; University of Pisa; US Fish and Wildlife Service; US Geological Survey; Valencian Regional Government; Vermont Center for Ecostudies; Victorian Fisheries Authority; VMRC Fishing License Fund; and Wildlife Warriors Worldwide, With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S
- Published
- 2021
- Full Text
- View/download PDF
10. Contributors
- Author
-
Zahra Abbasi, Mohamed Hamada Abdel Kodous, Callie W. Babbitt, Peter M. Budd, Zhen Lei Cheng, Tai-Shung Chung, Marc-Olivier Coppens, Joaquin Coronas, Levente Cseri, Yue Cui, Michael K. Danquah, Enrico Drioli, Arzu Ersöz, Xiaolei Fan, Anthony G. Fane, Maria-Chiara Ferrari, Wen Xiao Gai, Ángel Galán-Martín, Andrés González-Garay, Gonzalo Guillén-Gosálbez, John D. Hayler, Istvan T. Horvath, Jaison Jeevanandam, Yilai Jiao, Martin D. Johnson, C. Oliver Kappe, Rüstem Keçili, Kenta Kokado, Bradley P. Ladewig, Alexei Lapkin, Elsa Lasseuguette, Phantisa Limleamthong, Ryan P. Lively, Andrew Livingston, Yao Ma, Kiyoshi Matsuyama, Farhad Moghadam, Chandran Murugan, Masami Naya, Suzana P. Nunes, Kaushik Pal, Ho Bum Park, Camille Petit, Carlos Pozo, Thalappil Pradeep, Ji Soo Roh, Kazuki Sada, Rıdvan Say, Giulia Schukraft, Varsha Sharma, Jae Eun Shin, Richard L. Smith, Anandhakumar Sundaramurthy, Gyorgy Szekely, Kam C. Tam, Panagiotis Trogadas, Bernhardt L. Trout, Ikuo Ushiki, Luigi Vaccaro, Chun Feng Wan, Huanting Wang, Ecevit Yılmaz, Fengyi Zhang, Xiwang Zhang, and Xiangliang Zhang
- Published
- 2020
11. Challenges and Directions for Green Chemical EngineeringdRole of Nanoscale Materials
- Author
-
Xiangliang Zhang, Anthony G. Fane, Bernhardt L. Trout, C. Oliver Kappe, Joaquín Coronas, Martin D. Johnson, Andrew G. Livingston, István T. Horváth, John D. Hayler, Callie W. Babbitt, Gyorgy Szekely, Thalappil Pradeep, Enrico Drioli, Luigi Vaccaro, and Kam Chiu Tam
- Subjects
Sustainable development ,Globalization ,Engineering ,Artificial intelligence ,Continuous processing ,Green solvents ,Membranes ,MOF ,Nanomaterials ,Water purification ,Global challenges ,Chemical engineering ,business.industry ,Blueprint ,Thriving ,Sustainability ,Industrial research ,Chemical industry ,business - Abstract
Nanotechnology and nanomaterials are among the most significant scientific and industrial research breakthroughs of the 21st century. With the rapid globalization of science, chemists, materials scientists, and chemical engineers are synergistically working together worldwide to understand how to manipulate matter for the benefit of humankind. The Sustainable Development Goals set by the United Nations provide a blueprint through which a thriving and more sustainable future can be achieved for all. These goals address the global challenges we face, and most of them are directly affected by chemical manufacturing. Consequently, it is our responsibility to design, manufacture and recycle chemicals, and develop processes, considering sustainability. There are several emerging areas of nanoscale engineering with great promise for sustainable chemical engineering. There are a plethora of innovative materials and methodologies, all with the potential to enable sustainable industrial development, on the rise. This chapter gives a perspective on sustainable nanoscale engineering through the view of numerous academic and industrial experts.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.