With increasingly serious environmental pollution problems, research has focused on identifying functional genes within plants that can help ensure food security and soil governance. In particular, plants seem to have been able to evolve specific functional genes to respond to environmental changes by losing partial gene functions, thereby representing a novel adaptation mechanism. Herein, a new category of functional genes was identified and investigated, providing new directions for understanding heavy metal detoxification mechanisms. Interestingly, this category of proteins appears to exhibit specific complexing functions for heavy metals. Further, a new approach was established to evaluate ATP-binding cassette (ABC) transporter family functions using microRNA targeted inhibition. Moreover, mutant and functional genes were identified for future research targets. Expression profiling under five heavy metal stress treatments provided an important framework to further study defense responses of plants to metal exposure. In conclusion, the new insights identified here provide a theoretical basis and reference to better understand the mechanisms of heavy metal tolerance in potato plants. Further, these new data provide additional directions and foundations for mining gene resources for heavy metal tolerance genes to improve safe, green crop production and plant treatment of heavy metal soil pollution., Competing Interests: Declaration of competing interest We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled., (Copyright © 2021. Published by Elsevier B.V.)