6 results on '"Varfaj I"'
Search Results
2. A journey in unraveling the enantiorecognition mechanism of 3,5-dinitrobenzoyl-amino acids with two Cinchona alkaloid-based chiral stationary phases: The power of molecular dynamic simulations.
- Author
-
Varfaj I, Labikova M, Sardella R, Hettegger H, Lindner W, Kohout M, and Carotti A
- Subjects
- Stereoisomerism, Dinitrobenzenes chemistry, Molecular Dynamics Simulation, Cinchona Alkaloids chemistry, Amino Acids chemistry
- Abstract
Background: Innovations in computer hardware and software capabilities have paved the way for advances in molecular modelling techniques and methods, leading to an unprecedented expansion of their potential applications. In contrast to the docking technique, which usually identifies the most stable selector-selectand (SO-SA) complex for each enantiomer, the molecular dynamics (MD) technique enables the consideration of a distribution of the SO-SA complexes based on their energy profile. This approach provides a more truthful representation of the processes occurring within the column. However, benchmark procedures and focused guidelines for computational treatment of enantioselectivity at the molecular level are still missing., Results: Twenty-eight molecular dynamics simulations were performed to study the enantiorecognition mechanisms of seven N-3,5-dinitrobenzoylated α- and β-amino acids (DNB-AAs), occurring with the two quinine- and quinidine-based (QN-AX and QD-AX) chiral stationary phases (CSPs), under polar-ionic conditions. The MD protocol was optimized in terms of box size, simulation run time, and frame recording frequency. Subsequently, all the trajectories were analyzed by calculating both the type and amount of the interactions engaged by the selectands (SAs) with the two chiral selectors (SOs), as well as the conformational and interaction energy profiles of the formed SA-SO associates. All the MDs were in strict agreement with the experimental enantiomeric elution order and allowed to establish (i) that salt-bridge and H-bond interactions play a pivotal role in the enantiorecognition mechanisms, and (ii) that the π-cation and π-π interactions are the discriminant chemical features between the two SOs in ruling the chiral recognition mechanism., Significance: The results of this work clearly demonstrate the high contribution given by MD simulations in the comprehension of the enantiorecognition mechanism with Cinchona alkaloid-based CSPs. However, from this research endeavor it clearly emerged that the MD protocol optimization is crucial for the quality of the produced results., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Microsampling and enantioselective liquid chromatography coupled to mass spectrometry for chiral bioanalysis of novel psychoactive substances.
- Author
-
Protti M, Varfaj I, Carotti A, Tedesco D, Bartolini M, Favilli A, Gerli S, Mercolini L, and Sardella R
- Subjects
- Stereoisomerism, Chromatography, Liquid methods, Chromatography, High Pressure Liquid methods, Methanol, Tandem Mass Spectrometry methods
- Abstract
In this paper, the development of efficient enantioselective HPLC methods for the analysis of five benzofuran-substituted phenethylamines, two substituted tryptamines, and three substituted cathinones is described. For the first time, reversed-phase (eluents made up with acidic water-methanol solutions) and polar-ionic (eluent made up with an acetonitrile-methanol solution incorporating both an acidic and a basic additive) conditions fully compatible with mass spectrometry (MS) detectors were applied with a chiral stationary phase (CSP) incorporating the (+)-(18-crown-6)-tetracarboxylic acid chiral selector. Enantioresolution was achieved for nine compounds with α and R
S factors up to 1.32 and 5.12, respectively. Circular dichroism (CD) detection, CD spectroscopy in stopped-flow mode and quantum mechanical (QM) calculations were successfully employed to investigate the absolute stereochemistry of mephedrone, methylone and butylone and allowed to establish a (R)<(S) enantiomeric elution order for these compounds on the chosen CSP. Whole blood miniaturized samples collected by means of volumetric absorptive microsampling (VAMS) technology and fortified with the target analytes were extracted following an optimized protocol and effectively analysed by means of an ultra-high performance liquid chromatography-MS system. By this way a proof-of-concept procedure was applied, demonstrating the suitability of the method for quali-quantitative enantioselective assessment of the selected psychoactive substances in advanced biological microsamples. VAMS microsamplers including a polypropylene handle topped with a small tip of a polymeric porous material were used and allowed to volumetrically collect small aliquots of whole blood (10 μL) independently from its density. Highly appreciable volumetric accuracy (bias, in the -8.7-8.1% range) and precision (% CV, in the 2.8-5.9% range) turned out., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
4. Elucidation of retention mechanism of dipeptides on a ristocetin A-based chiral stationary phase using a combination of chromatographic and molecular simulation techniques.
- Author
-
Varfaj I, Pershina MV, Stepanova MV, Sardella R, Asnin LD, and Carotti A
- Subjects
- Chromatography, Stereoisomerism, Dipeptides chemistry, Ristocetin chemistry
- Abstract
Two chiral stationary phases virtually reproducing the Nautilus-R column were modeled in silico to study the enantiorecognition mechanism of some selected dipeptides, taking into consideration the two different anchoring alternatives to the silica layer involving the two ristocetin A amino groups. A mobile phase composed of water-methanol (40:60, v/v) was included in the system. The analyses of the trajectories supported the experimental L(LL)
- Published
- 2022
- Full Text
- View/download PDF
5. Efficient enantioresolution of aromatic α-hydroxy acids with Cinchona alkaloid-based zwitterionic stationary phases and volatile polar-ionic eluents.
- Author
-
Varfaj I, Protti M, Di Michele A, Macchioni A, Lindner W, Carotti A, Sardella R, and Mercolini L
- Subjects
- Chromatography, High Pressure Liquid, Hydroxy Acids, Ions, Stereoisomerism, Cinchona Alkaloids, Pharmaceutical Preparations
- Abstract
Single enantiomers of mandelic acid (1), 3-phenyllactic acid (2), and 3-(4-hydroxyphenyl)lactic acid (3) are the subject of many fields of investigation, spanning from the pharmaceutical synthesis to that of biocompatible and biodegradable polymers, while passing from the interest towards their antimicrobial activity to their role as biomarkers of particular pathological conditions or occupational exposures to specific xenobiotics. All above mentioned issues justify the need for accurate analytical methods enabling the correct determination of the individual enantiomers. So far, all the developed liquid chromatography (LC) methods were not or hardly compatible with mass spectrometry (MS) detection. In this paper, a commercially available Cinchona-alkaloid derivative zwitterionic chiral stationary phase [that is, the CHIRALPAK® ZWIX(-)] was successfully used to optimize the enantioresolution of compounds 1-3 under polar-ionic (PI) conditions with a mobile phase consisting of an acetonitrile/methanol 95/5 (v/v) mixture with 80 mM formic acid. With the optimized conditions, enantioseparation and enantioresolution values up to 1.46 and 4.41, respectively, were obtained. In order to assess the applicability of the optimized enantioselective chromatography conditions in real-life scenarios and on MS-based systems, a proof-of-concept application was efficiently carried out by analysing dry urine spot samples spiked with 1 by means of a LC-MS system. The (S)<(R) enantiomer elution order (EEO) was established for compounds 1 and 2 by analysing a pure enantiomeric standard of known configuration. This was not possible for 3 because not commercially available. For this compound, the same EEO was identified applying a procedure based on ab initio time-dependent density-functional theory simulations coupled to electronic circular dichroism analyses. Moreover, a molecular dynamics simulation unveiled the role of the phenolic OH in compound 3 in the retention mechanism., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
6. Original enantioseparation of illicit fentanyls with cellulose-based chiral stationary phases under polar-ionic conditions.
- Author
-
Varfaj I, Protti M, Cirrincione M, Carotti A, Mercolini L, and Sardella R
- Subjects
- Fentanyl analogs & derivatives, Fentanyl isolation & purification, Mass Spectrometry, Stereoisomerism, Cellulose chemistry, Chromatography, High Pressure Liquid methods, Fentanyl analysis
- Abstract
Fentanyl analogues used in therapy and a range of highly potent non-pharmaceutical fentanyl derivatives are subject to international control, as the latter are increasingly being synthesized illicitly and sold as 'synthetic heroin', or mixed with heroin. A significant number of hospitalizations and deaths have been reported in the EU and USA following the use of illicitly synthesized fentanyl derivatives. It has been unequivocally demonstrated that the enantiomers of fentanyl derivatives exhibit different pharmaco-toxicological profiles, which makes crucial to avail of suitable analytical methods enabling investigations at a "stereochemical level". Chromatographic methods useful to discriminate the enantioseparation of fentanyls and their derivatives are still missing in the literature. This is the first study in which the enantioseparation of four fentanyl derivatives, that is, (±)-trans-3-methyl norfentanyl, (±)-cis-3-methyl norfentanyl, β-hydroxyfentanyl, and β-hydroxythiofentanyl, has been obtained under polar-ionic conditions. Indeed, the use of ACN-based mobile phases with minor amounts of either 2-propanol or ethanol (plus diethylamine and formic acid as ionic additives) allowed obtaining enantioseparation and enantioresolution factors up to 1.83 and 7.02, respectively. For the study, the two chiral stationary phases cellulose tris(3-chloro-4-methylphenylcarbamate) and cellulose tris(4-chloro-3-methylphenylcarbamate) were used, displaying a remarkably different performance towards the enantioseparation of (±)-cis-3-methyl norfentanyl. Chiral LC analyses with a high-resolution mass spectrometry detector were also carried out in order to confirm the obtained data and demonstrate the suitability and compatibility of the optimized mobile phases with mass spectrometric systems., Competing Interests: Declaration of Competing Interest We hereby confirm no conflict of interest., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.