1. Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration.
- Author
-
Pozzobon LG, Sperling LE, Teixeira CE, Malysz T, and Pranke P
- Abstract
A promising alternative to conventional nerve grafting is the use of artificial grafts made from biodegradable and biocompatible materials and support cells. The aim of this study has been to produce a biodegradable nerve conduit and investigate the cytocompatibility with stem cells and its regeneration promoting properties in a rat animal model. A poly (lactic-co-glycolic acid) (PLGA) conduit of aligned nanofibers was produced by the electrospinning method, functionalized with gelatin and seeded either with mouse embryonic stem cells (mESCs) or with human mesenchymal stem cells (SHED). The cell proliferation and viability were analyzed in vitro. The conduits were implanted in a rat model of sciatic nerve lesion by transection. The functional recovery was monitored for 8 weeks using the Sciatic Functional Index (SFI) and histological analyses were used to assess the nerve regeneration. Scaffolds of aligned PLGA fibers with an average diameter of 0.90 ± 0.36 μm and an alignment coefficient of 0.817 ± 0.07 were produced. The treatment with gelatin increased the fiber diameter to 1.05 ± 0.32 μm, reduced the alignment coefficient to 0.655 ± 0.045 and made the scaffold very hydrophilic. The cell viability and Live/dead assay showed that the stem cells remained viable and proliferated after 7 days in culture. Confocal images of phalloidin/DAPI staining showed that the cells adhered and proliferated widely, in fully adaptation with the biomaterial. The SFI values of the group that received the conduit were similar to the values of the control lesioned group. In conclusion, conduits composed of PLGA-gelatin nanofibers were produced and promoted a very good interaction with the stem cells. Although in vitro studies have shown this biomaterial to be a promising biomaterial for the regeneration of nerve tissue, in vivo studies of this graft have not shown significant improvements in nerve regeneration., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF