1. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment.
- Author
-
Sgrigna G, Baldacchini C, Dreveck S, Cheng Z, and Calfapietra C
- Subjects
- Air Pollutants, Cities, Environmental Monitoring, Italy, Particulate Matter, Plant Leaves, Trees chemistry
- Abstract
Air pollution in the urban environment is widely recognized as one of the most harmful threats for human health. International organizations such as the United Nations and the European Commission are highlighting the potential role of nature in mitigating air pollution and are now funding the implementation of Nature-Based Solutions, especially at the city level. Over the past few decades, the attention of the scientific community has grown around the role of urban forest in air pollution mitigation. Nevertheless, the understanding on Particulate Matter (PM) retention mechanisms by tree leaves is still limited. In this study, twelve tree species were sampled within an urban park of an industrial city. Two techniques were used for leaf analysis: Vacuum/Filtration and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy, in order to obtain a quali-quantitative analysis of the different PM size fractions. Results showed that deposited PM loads vary significantly among species. Different leaf traits, including micro and macromorphological characteristics, were observed, measured and ranked, with the final aim to relate them with PM load. Even if no significant correlation between each single leaf characteristic and PM deposition was observed (p > 0.05), multivariate analysis revealed relationships between clusters of leaf traits and deposited PM. Thus, by assigning a score to each trait, an Accumulation index (Ai) was calculated, which was significantly related to the leaf deposited PM load (p ≤ 0.05)., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF