1. Functional Characterization of Native, High-Affinity GABAA Receptors in Human Pancreatic β Cells
- Author
-
Sergiy V. Korol, Zhe Jin, Yang Jin, Amol K. Bhandage, Anders Tengholm, Nikhil R. Gandasi, Sebastian Barg, Daniel Espes, Per-Ola Carlsson, Derek Laver, and Bryndis Birnir
- Subjects
Medicine ,Medicine (General) ,R5-920 - Abstract
In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet β cells as biological sensors and reveal that 100–1000 nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D. Keywords: GABA, GABAA receptor, Pancreatic islet, Type 2 diabetes
- Published
- 2018
- Full Text
- View/download PDF