1. A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: the DIRECT PLUS randomized controlled trial
- Author
-
Hoffmann, A., Meir, A.Y., Hagemann, T., Czechowski, P., Müller, L., Engelmann, Beatrice, Haange, Sven Bastiaan, Rolle-Kampczyk, Ulrike, Tsaban, G., Zelicha, H., Rinott, E., Kaplan, A., Shelef, I., Stumvoll, M., Blüher, M., Liang, L., Ceglarek, U., Isermann, B., von Bergen, Martin, Kovacs, P., Keller, M., Shai, I., Hoffmann, A., Meir, A.Y., Hagemann, T., Czechowski, P., Müller, L., Engelmann, Beatrice, Haange, Sven Bastiaan, Rolle-Kampczyk, Ulrike, Tsaban, G., Zelicha, H., Rinott, E., Kaplan, A., Shelef, I., Stumvoll, M., Blüher, M., Liang, L., Ceglarek, U., Isermann, B., von Bergen, Martin, Kovacs, P., Keller, M., and Shai, I.
- Abstract
Background The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. Methods Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. Results A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10−3) and highlighted one module including the
- Published
- 2023