1. Implementation of ‘chaotic’ advection for viscous fluids in heat exchanger/reactors
- Author
-
Félicie Theron, Zoé Anxionnaz-Minvielle, Michel Cabassud, Patrice Tochon, Raphael Couturier, Christophe Gourdon, Clément Magallon, Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie Chimique (LGC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire de génie chimique [ancien site de Basso-Cambo] (LGC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Work (thermodynamics) ,Chaotic advection ,Convective heat transfer ,020209 energy ,General Chemical Engineering ,Energy Engineering and Power Technology ,Thermodynamics ,02 engineering and technology ,Industrial and Manufacturing Engineering ,Continuous mode ,Physics::Fluid Dynamics ,symbols.namesake ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,020401 chemical engineering ,Mass transfer ,Heat exchanger ,0202 electrical engineering, electronic engineering, information engineering ,Génie chimique ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,0204 chemical engineering ,skin and connective tissue diseases ,Génie des procédés ,Viscous fluids ,Split-and-recombine pattern ,Chemistry ,Process Chemistry and Technology ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,fungi ,Plate heat exchanger ,Reynolds number ,Laminar flow ,Milieux fluides et réactifs ,General Chemistry ,Mechanics ,Heat exchanger/reactor ,Process intensification ,Heat transfer ,symbols - Abstract
International audience; When viscous fluids are involved, laminar hydraulic conditions and heat and mass transfer intensification are conflicting phenomena. A channel geometry based on Split-And-Recombine (SAR) patterns is experimentally investigated. The principle implements the Baker’s transformation and ‘chaotic’ structures are generated to promote heat and mass transfer. This work assesses the energy efficiency of different heat exchanger/reactors integrating these SAR patterns. The heat transfer capacity is assessed and compared with the energy consumption of each mock-up. It is sensitive to the cooling mode and to the number of SAR patterns per length unit as well. The continuous oxidation of sodium thiosulfate with hydrogen peroxide has been implemented. Conversions up to 99% are reached according to the utility fluid temperature and the residence time. Finally, the whole performances of the SAR geometries are compared to a plate-type heat exchanger/reactor with a corrugated pattern. The more viscous the fluid, the more the energy efficiency of the SAR design increases compared to the corrugated design because of the balance between advection and diffusion mechanisms. The interest in terms of energy efficiency in working with SAR heat exchanger/reactor appears from Reynolds numbers below 50.
- Published
- 2016
- Full Text
- View/download PDF