1. Synthesis of N-acetylcysteine functionalized cholic acid based triarmed poly DL-Lactide and encapsulation of gold nanoparticles: Studies on the antimicrobial activity and biocompatibility for drug delivery applications.
- Author
-
Ezhumalai N, Nanthagopal M, Kasthuri J, and Rajendiran N
- Subjects
- Micelles, Drug Delivery Systems, Biocompatible Materials chemistry, Drug Carriers chemistry, Microbial Sensitivity Tests, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents pharmacology, Anti-Infective Agents chemistry, Anti-Infective Agents pharmacology, Chemistry Techniques, Synthetic, Hemolysis drug effects, Humans, Acetylcysteine chemistry, Acetylcysteine pharmacology, Cholic Acid chemistry, Gold chemistry, Polyesters chemistry, Metal Nanoparticles chemistry
- Abstract
Cholic acid based biodegradable reverse polymeric micelles have been widely utilized as preclinically suitable drug delivery system for poorly water-soluble drugs. In this report, we developed N-acetylcysteine functionalized cholic acid based triarmed poly (Dl-lactide) (ACyCA-triarmed (DLL)
n as reversed polymeric micelles for drug delivery studies. ACyCA was synthesized via thiol-yne click reaction and subsequently used as an initiator for the synthesis of ACyCA-triarmed (DLL)n through ring opening polymerization (ROP) using Sn (Oct)2 as a catalyst. The synthesized ACyCA-triarmed (DLL)n was characterized using GPC, FT-IR,1 H NMR,13 C NMR, spectrofluorometer, HR-TEM, DSC, TGA, XRD, DLS, and zeta potential techniques. The reverse critical micellar concentration of the polymer was determined to be 1.99 mg/mL using a spectrofluorometer. The synthesized reverse micelles (RMs) were utilized as a reducing and capping agent for the preparation of AuNPs under sunlight exposure. The formed AuNPs exhibited spherical in shape with an average size of ∼ 23.4 nm and Dh was found to be 86.8 ± 1.3 nm as evidenced by the TEM and DLS analysis. Furthermore, the antimicrobial activity, hemolytic activity, anti-oxidant activity, and in-vitro drug release studies were examined for the RMs-AuNPs and compared with RMs. The hydrophobic nature of RMs and RMs-AuNPs had better haemocompatibility at above the reversed CMC. The antioxidant activity RMs-AuNPs showed better inhibitory effect in a dose-dependent manner as compared to RMs. The RMs-AuNPs formulation act as reservoir for solubilization of hydrophobic doxorubicin (Dox.HCl) drugs and can be used as therapeutic platform for slow and sustained release of drugs in biological medium., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)- Published
- 2024
- Full Text
- View/download PDF