1. High performance of symmetric micro-supercapacitors based on silicon nanowires using N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide as electrolyte
- Author
-
Gérard Bidan, Pascal Gentile, Elzbieta Frackowiak, Pedro Gómez-Romero, Vanesa Ruiz, Hülya Sahin, Saïd Sadki, Thomas J. S. Schubert, David Aradilla, Commissariat à l'Ènergie Atomique et aux Ènergies Alternatives (France), European Commission, Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ICN2 - Institut Catala de Nanociencia i Nanotecnologia (ICN2), Universitat Autònoma de Barcelona (UAB), Faculty of Chemical Technology, Poznan University of Technology (PUT), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemical vapour deposition ,Materials science ,Silicon ,micro-supercapacitors ,Micro-supercapacitors ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,Chemical vapor deposition ,Electrolyte ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Capacitance ,chemical vapor deposition ,ionic liquids ,chemistry.chemical_compound ,Silicon nanowires ,General Materials Science ,Electrical and Electronic Engineering ,Supercapacitor ,Renewable Energy, Sustainability and the Environment ,electrochemical energy storage ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Ionic liquids ,Chemical engineering ,chemistry ,Ionic liquid ,Electrochemical energy storage ,0210 nano-technology ,Faraday efficiency - Abstract
This work describes the development and performance of a symmetric micro-supercapacitor made of nanostructured electrodes based on silicon nanowires (SiNWs) deposited using chemical vapor deposition (CVD) on silicon substrates. The performance of the SiNWs micro-supercapacitor employing an aprotic ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide) (PYR13TFSI) as an electrolyte was able to deliver a maximal power density of 182mWcm-2 and a specific energy of 190μJcm-2 operating at a wide cell voltage of 4V with a quasi-ideal capacitive behavior. The lifetime of the device exhibited a remarkable electrochemical stability retaining 75% of the initial capacitance after several million galvanostatic charge-discharge cycles at a high current density of 1mAcm-2. Furthermore, a coulombic efficiency of approximately 99% was obtained after galvanostatic cycling test without structural degradation on the morphology of SiNWs., The authors acknowledge the CEA for financial support of this work. This project has received funding from the European Union׳s Seventh Program for Research, Technological Development and Demonstration under Grant agreement no. 309143 (2012–2015).
- Published
- 2014