1. 3D-printed polycaprolactone/collagen/alginate scaffold incorporating phlorotannin for bone tissue regeneration: Assessment of sub-chronic toxicity.
- Author
-
Kim TH, Oh GW, Heo SY, Heo SJ, Kim YM, Lee DS, Kang HW, Kim HW, Lee B, Choi IW, Park WS, and Jung WK
- Abstract
The development of effective scaffolds for bone regeneration is crucial given the increasing demand for innovative solutions to address bone defects and enhance healing process. In this study, a polycaprolactone/fish collagen/alginate (P/FC/A) 3D scaffold incorporating phlorotannin was developed to promote bone tissue regeneration. While the efficacy of the P/FC/A scaffold has been demonstrated through in vitro and in vivo experiments, its sub-chronic toxicity in animal models remains understudied, raising concerns regarding its safety in clinical application. Therefore, this study assessed the sub-chronic toxicity of the P/FC/A scaffold over 12 week using a New Zealand White rabbit model. Our results indicate no significant adverse effects in the group exposed to the P/FC/A scaffold compared with the negative control group implanted with a high-density polyethylene scaffold. These findings underscore the non-toxicity and safety profile of the P/FC/A scaffold, further supporting its potential suitability for clinical use in bone regeneration., Competing Interests: Declaration of competing interest Won-Kyo Jung reports financial support was provided by National Research Foundation of Korea. Won-Kyo Jung reports financial support was provided by Korea Ministry of Oceans and Fisheries. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF