5 results on '"Ortega-Retuerta, Eva"'
Search Results
2. Particulate and dissolved fluorescent organic matter fractionation and composition: Abiotic and ecological controls in the Southern Ocean.
- Author
-
Cabrera-Brufau M, Marrasé C, Ortega-Retuerta E, Nunes S, Estrada M, Sala MM, Vaqué D, Pérez GL, Simó R, and Cermeño P
- Subjects
- Chlorophyll A, Coloring Agents, Oceans and Seas, Particulate Matter analysis, Seawater, Dissolved Organic Matter, Phytoplankton
- Abstract
Phytoplankton-derived organic matter sustains heterotrophic marine life in regions away from terrestrial inputs such as the Southern Ocean. Fluorescence spectroscopy has long been used to characterize the fluorescent organic matter (FOM) pool. However, most studies focus only in the dissolved FOM fraction (FDOM) disregarding the contribution of particles. In order to assess the dynamics and drivers of the dissolved and particulate fractions of FOM, we used a Lagrangian approach to follow the time evolution of phytoplankton proliferations at four different sites in the Southern Ocean and compared the FOM in filtered and unfiltered seawater aliquots. We found that filtration had little effects on FOM visible spectrum fluorescence intensities, implying that most of this signal was due to dissolved fluorophores. On the other hand, protein-like fluorescence was strongly supressed by filtration, with fluorescence of particles accounting for up to 90 % of the total protein-like FOM. Photobleaching was identified as the main driver of visible FDOM composition, which was better described by indices of phytoplankton photoacclimation than by measurements of the incident solar radiation dose. In contrast, protein-like FOM intensity and fractionation were primarily related to abundance, composition and physiological state of phytoplankton proliferations. The chlorophyll a concentration from non-diatom phytoplankton explained 91 % of the particulate protein-like FOM variability. The proportion of protein-like fluorescence found in the dissolved phase was predicted by the combination of potential viral and grazing pressures, which accounted for 51 and 29 % of its variability, respectively. Our results show that comparing FOM measurements from filtered and unfiltered seawater provides relevant information on the taxonomic composition and cell integrity of phytoplankton communities. A better understanding of the commonly overlooked FOM fractionation process is essential for the implementation of in situ fluorescence sensors and will also help us better understand the processes that govern OM cycling in marine systems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
3. Mismatched dynamics of dissolved organic carbon and chromophoric dissolved organic matter in the coastal NW Mediterranean Sea.
- Author
-
Sánchez-Pérez ED, Pujo-Pay M, Ortega-Retuerta E, Conan P, Peters F, and Marrasé C
- Subjects
- Ecosystem, Mediterranean Sea, Rivers, Carbon analysis, Chlorophyll A
- Abstract
Coastal marine ecosystems are strongly influenced by different occasional events, such as intense winds, mixing, rain and river discharges. These events can directly or indirectly cause changes in dissolved organic matter (DOM) quality through a cascade of different biotic and abiotic processes. Changes in DOM quality are often associated with changes in DOM optical properties. Thus, examining the dynamics of chromophoric DOM (CDOM) can provide valuable information about biological and physical processes that have occurred in the ecosystem. Episodic meteorological events, particularly in temperate areas, appear very abruptly and induce very rapid responses; therefore, high time-resolved measurements are needed to capture them. We used a weekly sampling scheme to characterize DOM and nutrient dynamics in the NW Mediterranean coastal station 'SOLA'. From February 2013 to April 2014, we measured several physical and chemical variables including temperature, salinity, inorganic nutrients, chlorophyll a dissolved organic carbon (DOC), CDOM and fluorescent DOM (FDOM). During this period, two extremely high fresh water intrusions greatly influenced the dynamics of some DOM fractions, in particular the FDOM. Inorganic nutrients and chlorophyll a showed seasonal patterns: A winter period characterized by a high nutrient concentration in surface waters favored the phytoplankton spring bloom; then, summer stratification extended until autumn. This stratification led to nutrient depletion and, consequently, lower chlorophyll a values in the photic zone. The CDOM and FDOM optical active fractions did not follow temporal trends similar to total DOC. This was likely because the potential sources and sinks of these DOM pools are microbial activity and light exposure, and these were acting simultaneously but in opposite directions. Interestingly, DOC exhibited the highest concentrations in summer, coinciding with nutrient and chlorophyll a minima. To explain this mismatch, we propose a sequence of abiotic and biotic phenomena that drive DOC temporal dynamics., Competing Interests: Declaration of competing interest All authors of this manuscript declare that there is no conflict of interest., (Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
4. Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean.
- Author
-
Zamanillo M, Ortega-Retuerta E, Nunes S, Estrada M, Sala MM, Royer SJ, López-Sandoval DC, Emelianov M, Vaqué D, Marrasé C, and Simó R
- Abstract
Transparent exopolymer particles (TEP) are an abundant class of suspended organic particles, mainly formed by polysaccharides, which play important roles in biogeochemical and ecological processes in the ocean. In this study we investigated horizontal and vertical TEP distributions (within the euphotic layer, including the upper surface) and their short-term variability along with a suite of environmental and biological variables in four distinct regions of the Southern Ocean. TEP concentrations in the surface (4 m) averaged 102.3 ± 40.4 μg XG eq. L
-1 and typically decreased with depth. Chlorophyll a (Chl a) concentration was a better predictor of TEP variability across the horizontal (R2 = 0.66, p < 0.001) and vertical (R2 = 0.74, p < 0.001) scales than prokaryotic heterotrophic abundance and production. Incubation experiments further confirmed the main role of phytoplankton as TEP producers. The highest surface TEP concentrations were found north of the South Orkney Islands (144.4 ± 21.7 μg XG eq. L-1 ), where the phytoplankton was dominated by cryptophytes and haptophytes; however, the highest TEP:Chl a ratios were found south of these islands (153.4 ± 29.8 μg XG eq (μg Chl a)-1 , compared to a mean of 79.3 ± 54.9 μg XG eq (μg Chl a)-1 in the whole cruise, in association with haptophyte dominance, proximity of sea ice and high exposure to solar radiation. TEP were generally enriched in the upper surface (10 cm) respect to 4 m, despite a lack of biomass enrichment, suggesting either upward transport by positive buoyancy or bubble scavenging, or higher production at the upper surface by light stress or aggregation. TEP concentrations did not present any significant cyclic diel pattern. Altogether, our results suggest that photobiological stress, sea ice melt and turbulence add to phytoplankton productivity in driving TEP distribution across the Antarctic Peninsula area and Atlantic sector of the Southern Ocean., (Copyright © 2019 Elsevier B.V. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
5. Seasonal dynamics of transparent exopolymer particles (TEP) and their drivers in the coastal NW Mediterranean Sea.
- Author
-
Ortega-Retuerta E, Marrasé C, Muñoz-Fernández A, Sala MM, Simó R, and Gasol JM
- Abstract
Transparent Exopolymer Particles (TEPs) are a subclass of organic particles with high impact in biogeochemical and ecological processes, such as the biological carbon pump, air-sea interactions, or the microbial loop. However, the complexity in production and consumption makes TEP dynamics hardly predictable, calling for the need of descriptive studies about the in situ dynamics of these particles. We followed monthly TEP dynamics and combined them with a dataset of environmental variables during three years in a coastal site of the oligotrophic North Western Mediterranean (Blanes Bay). TEP concentration, ranging from 11.3 to 289.1μgXGeqL
-1 (average 81.7±11.7μgXGeqL-1 ), showed recurrent peaks in early summer (June-July). TEP were temporally disconnected from chlorophyll a maxima, that occurred in late winter and early spring (maxima 1.21μgL-1 ), but they were significantly related to the abundance of specific phytoplankton groups (diatoms and dinoflagellates) and also coincided with periods of low nutrient concentrations. The fraction of particulate organic carbon in the form of TEP (the TEP:POC and TEP:PM ratios) were also highest in early summer, indicating that TEP-enriched particles of low density accumulate in surface waters during stratified periods. We hypothesize that the accumulation of these particles affects the microbial food web by enhancing the activity of specific prokaryotic extracellular enzymes (esterase, β-glucosidase and alkaline phosphatase) and promoting the abundance of heterotrophic nanoflagellates., (Copyright © 2018 Elsevier B.V. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.