1. Scaling high-speed counter-current chromatography for preparative neodymium purification: Insights and challenges.
- Author
-
Weberg AB, Dembowski M, Blad QK, Goff GS, Hanson SK, and May I
- Subjects
- Organophosphates, Countercurrent Distribution methods, Neodymium chemistry, Neodymium isolation & purification
- Abstract
Efficient rare earth element (REE) separations are becoming increasingly important to technologies ranging from renewable energy and high-performance magnets to applied radioisotope separations. These separations are made challenging by the extremely similar chemical and physical characteristics of the individual elements, which almost always occupy the 3+ oxidation state under ambient conditions. Herein, we discuss the development of a novel REE separation aimed at obtaining purified samples of neodymium (Nd) on a multi-milligram scale using high-speed counter-current chromatography (HSCCC). The method takes advantage of the subtle differences in ionic radii between neighboring REEs to tune elution rates in dilute acid through implementation of the di-(2-ethylhexyl)phosphoric acid (HDEHP)-infused stationary phase (SP) of the column. A La/Ce/Nd/Sm separation was demonstrated at a significantly higher metal loading than previously accomplished by HSCCC (15 mg, R
Nd/REE > 0.85), while the Pr/Nd separation was achieved at lower metal loadings (0.3 mg, RNd/Pr = 0.75 - 0.83). The challenges associated with scaling REE separations via HSCCC are presented and discussed within., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)- Published
- 2024
- Full Text
- View/download PDF