1. Brain reserve in midlife is associated with executive function changes across 12 years.
- Author
-
Gustavson DE, Elman JA, Reynolds CA, Eyler LT, Fennema-Notestine C, Puckett OK, Panizzon MS, Gillespie NA, Neale MC, Lyons MJ, Franz CE, and Kremen WS
- Subjects
- Humans, Male, Cognition physiology, Genotype, Longitudinal Studies, Neuroimaging, Aging physiology, Aging genetics, Aging psychology, Apolipoproteins E genetics, Brain diagnostic imaging, Brain physiology, Cognitive Reserve physiology, Executive Function physiology
- Abstract
We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or APOE genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (r=.10, p=.040) and less decline in executive function over 12 years (r=.34, p=.001). These associations were not moderated by cognitive reserve or APOE genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or APOE genotype., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF