1. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2Summary
- Author
-
Jingtao Liu, Ming Tao, Wei Zhao, Qingru Song, Xiaodan Yang, Meng Li, Yanhua Zhang, Dianrong Xiu, and Zhiqian Zhang
- Subjects
Pancreatic Cancer ,Tumor-Initiating Cell ,Therapeutic Target ,Diseases of the digestive system. Gastroenterology ,RC799-869 - Abstract
Background & Aims: Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. Methods: We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. Results: We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. Conclusions: α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.
- Published
- 2023
- Full Text
- View/download PDF