1. First evidence of molecular response of the shrimp Hippolyte inermis to biodegradable microplastics.
- Author
-
Amato A, Esposito R, Pinto B, Viel T, Glaviano F, Cocca M, Manfra L, Libralato G, Aflalo ED, Sagi A, Costantini M, and Zupo V
- Abstract
The increasing demand for sustainable alternatives to conventional plastics has propelled the interest in bioplastics. A few papers reported on the effects of plastics on crustaceans, but no indication about biodegradable polymers is available. Hippolyte inermis Leach, 1816 is a protandric shrimp commonly living on leaves of the seagrass Posidonia oceanica, in the Mediterranean Sea. This crustacean is typically chosen as a model to study sex differentiation processes. Here, we demonstrated its convenience as a model organism to study the effects of biodegradable polymers (BPs). Five BPs were studied: polybutylene succinate (PBS), polybutylene succinate-co-butylene adipate (PBSA), polycaprolactone (PCL), poly-3-hydroxybutyrates (PHB) and polylactic acid (PLA). Larvae of H. inermis were exposed to three concentrations of each BP (1, 5 and 10 mg/L, respectively) for ten days. After exposure, the expression levels of eighteen genes involved in stress response and detoxification processes, retrieved from a H. inermis transcriptomic library, were validated by Real Time qPCR. This study is the first using a molecular approach to detect H. inermis responses to contaminants and in particular to biodegradable polymers, through the evaluation of functional gene's pathways., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF