1. Association of ambient PM 10 and PM 2.5 with coronary stenosis measured using selective coronary angiography.
- Author
-
Luo M, Xie X, Wu J, Zhang L, Zheng X, Xie M, Lin N, Xiao H, Zeng J, Lan G, Lu X, Ye X, Huang Z, Xu T, Wang T, Lin K, Guo Y, and Xie X
- Abstract
Background: Long-term ambient particulate matter (PM) exposure exerts detrimental effects on cardiovascular health. Evidence on the relation of chronically exposed ambient PM
10 and PM2.5 with coronary stenosis remains lacking. Our aim was to investigate the association of PM10 and PM2.5 with coronary stenosis in patients undergoing coronary angiography., Methods: We performed a retrospective cohort study consisting of 7513 individuals who underwent coronary angiography in Fujian Province, China, from January 2019 to December 2021. We calculated a modified Gensini score (GS) to represent the degree of stenosis in coronary arteries by selective coronary angiography. We fitted linear regressions and logistic models to assess the association of PM10 and PM2.5 with coronary stenosis. We employed restricted cubic splines to describe the exposure-response curves. We performed mediation analyses to assess the potential mediators., Results: Long-term ambient PM10 and PM2.5 (prior three years average) exposure was significantly associated with the GS, with a breakpoint concentration of 47.5 μg/m3 and 25.8 μg/m3 for PM10 and PM2.5 , respectively, above which we found a linear positive exposure-response relationship of ambient PM with GS. Each 10 µg /m3 increase in PM10 exposure (β: 4.81, 95 % CI: 0.44-9.19) and PM2.5 exposure [β: 10.50, 95 % CI: 3.14-17.86] were positively related to the GS. The adjusted odds ratio (OR) for each 10 µg/m3 increment in PM10 exposure on severe coronary stenosis was 1.33 (95 % CI: 1.04-1.76). Correspondingly, the adjusted OR for PM2.5 was 1.87 (95 % CI: 1.24-2.99). The mediation analysis indicated that the effect of PM10 on coronary stenosis may be partially mediated through total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, serum creatinine and blood urea nitrogen, and the effect of PM2.5 may be mediated in part by hemoglobin A1c., Conclusion: Our study provides the first evidence that chronic ambient PM10 and PM2.5 exposure was associated with coronary stenosis assessed by GS in patients with suspected coronary artery disease and reveals its potential mediators., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF