1. STIM1 R304W causes muscle degeneration and impaired platelet activation in mice.
- Author
-
Gamage TH, Gunnes G, Lee RH, Louch WE, Holmgren A, Bruton JD, Lengle E, Kolstad TRS, Revold T, Amundsen SS, Dalen KT, Holme PA, Tjønnfjord GE, Christensen G, Westerblad H, Klungland A, Bergmeier W, Misceo D, and Frengen E
- Subjects
- Animals, Calcium metabolism, Female, Locomotion, Male, Mice, Mice, Inbred Strains, Muscle, Skeletal metabolism, Muscle, Skeletal pathology, Platelet Activation, Stromal Interaction Molecule 1 metabolism
- Abstract
STIM1 and ORAI1 regulate store-operated Ca
2+ entry (SOCE) in most cell types, and mutations in these proteins have deleterious and diverse effects. We established a mouse line expressing the STIM1 R304 W gain-of-function mutation causing Stormorken syndrome to explore effects on organ and cell physiology. While STIM1 R304 W was lethal in the homozygous state, surviving mice presented with reduced growth, skeletal muscle degeneration, and reduced exercise endurance. Variable STIM1 expression levels between tissues directly impacted cellular SOCE capacity. In contrast to patients with Stormorken syndrome, STIM1 was downregulated in fibroblasts from Stim1R304W/R304W mice, which maintained SOCE despite constitutive protein activity. In studies using foetal liver chimeras, STIM1 protein was undetectable in homozygous megakaryocytes and platelets, resulting in impaired platelet activation and absent SOCE. These data indicate that downregulation of STIM1 R304 W effectively opposes the gain-of-function phenotype associated with this mutation, and highlight the importance of STIM1 in skeletal muscle development and integrity., (Copyright © 2018 Elsevier Ltd. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF